Retractions of functors between synthetic categories

Content created by Ivan Kobe.

Created on 2024-09-25.
Last modified on 2024-11-17.

{-# OPTIONS --guardedness #-}

module synthetic-category-theory.retractions-synthetic-categories where
Imports
open import foundation.cartesian-product-types
open import foundation.dependent-pair-types
open import foundation.universe-levels

open import globular-types.globular-types

open import synthetic-category-theory.synthetic-categories

Idea

A retraction of a functor f: A → B is a functor g: B → A equipped with a natural isomorphism g∘f ≅ id.

The predicate of being a retraction of a functor f: A → B

module _
  {l : Level}
  where

  is-retraction-Synthetic-Category-Theory :
    (κ : language-Synthetic-Category-Theory l)
    (μ : composition-Synthetic-Category-Theory κ)
    (ι : identity-Synthetic-Category-Theory κ)
    {C D : category-Synthetic-Category-Theory κ}
    (f : functor-Synthetic-Category-Theory κ C D) 
    functor-Synthetic-Category-Theory κ D C  UU l
  is-retraction-Synthetic-Category-Theory κ μ ι f r =
    isomorphism-Synthetic-Category-Theory κ
      ( comp-functor-Synthetic-Category-Theory μ r f)
      ( id-functor-Synthetic-Category-Theory ι _)

The type of retractions of a functor f: A → B

module _
  {l : Level}
  where

  retraction-Synthetic-Category-Theory :
    (κ : language-Synthetic-Category-Theory l)
    (μ : composition-Synthetic-Category-Theory κ)
    (ι : identity-Synthetic-Category-Theory κ)
    {C D : category-Synthetic-Category-Theory κ}
    (f : functor-Synthetic-Category-Theory κ C D)  UU l
  retraction-Synthetic-Category-Theory κ μ ι f =
    Σ ( functor-Synthetic-Category-Theory κ _ _)
      ( is-retraction-Synthetic-Category-Theory κ μ ι f)

The components of a retraction

  functor-retraction-Synthetic-Category-Theory :
    (κ : language-Synthetic-Category-Theory l)
    (μ : composition-Synthetic-Category-Theory κ)
    (ι : identity-Synthetic-Category-Theory κ)
    {C D : category-Synthetic-Category-Theory κ}
    {f : functor-Synthetic-Category-Theory κ C D} 
    retraction-Synthetic-Category-Theory κ μ ι f 
      functor-Synthetic-Category-Theory κ D C
  functor-retraction-Synthetic-Category-Theory κ μ ι = pr1

  is-retraction-functor-retraction-Synthetic-Category-Theory :
    (κ : language-Synthetic-Category-Theory l)
    (μ : composition-Synthetic-Category-Theory κ)
    (ι : identity-Synthetic-Category-Theory κ)
    {C D : category-Synthetic-Category-Theory κ}
    {f : functor-Synthetic-Category-Theory κ C D}
    (r : retraction-Synthetic-Category-Theory κ μ ι f) 
      is-retraction-Synthetic-Category-Theory κ μ ι f
        ( functor-retraction-Synthetic-Category-Theory κ μ ι r)
  is-retraction-functor-retraction-Synthetic-Category-Theory κ μ ι = pr2

Recent changes