Morphisms of directed graphs
Content created by Egbert Rijke, Fredrik Bakke and Jonathan Prieto-Cubides.
Created on 2022-03-22.
Last modified on 2024-12-03.
module graph-theory.morphisms-directed-graphs where
Imports
open import foundation.binary-dependent-identifications open import foundation.binary-transport open import foundation.dependent-pair-types open import foundation.equality-dependent-function-types open import foundation.equivalences open import foundation.function-types open import foundation.functoriality-dependent-pair-types open import foundation.fundamental-theorem-of-identity-types open import foundation.homotopies open import foundation.homotopy-induction open import foundation.identity-types open import foundation.structure-identity-principle open import foundation.torsorial-type-families open import foundation.universe-levels open import graph-theory.directed-graphs
Idea
A morphism of directed graphs from G
to H
consists of a map f
from the
vertices of G
to the vertices of H
, and a family of maps from the edges
E_G x y
in G
to the edges E_H (f x) (f y)
in H
.
Definitions
Morphisms of directed graphs
module _ {l1 l2 l3 l4 : Level} (G : Directed-Graph l1 l2) (H : Directed-Graph l3 l4) where hom-Directed-Graph : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) hom-Directed-Graph = Σ ( vertex-Directed-Graph G → vertex-Directed-Graph H) ( λ α → (x y : vertex-Directed-Graph G) → edge-Directed-Graph G x y → edge-Directed-Graph H (α x) (α y)) module _ (f : hom-Directed-Graph) where vertex-hom-Directed-Graph : vertex-Directed-Graph G → vertex-Directed-Graph H vertex-hom-Directed-Graph = pr1 f edge-hom-Directed-Graph : {x y : vertex-Directed-Graph G} (e : edge-Directed-Graph G x y) → edge-Directed-Graph H ( vertex-hom-Directed-Graph x) ( vertex-hom-Directed-Graph y) edge-hom-Directed-Graph {x} {y} e = pr2 f x y e direct-predecessor-hom-Directed-Graph : (x : vertex-Directed-Graph G) → direct-predecessor-Directed-Graph G x → direct-predecessor-Directed-Graph H (vertex-hom-Directed-Graph x) direct-predecessor-hom-Directed-Graph x = map-Σ ( λ y → edge-Directed-Graph H y (vertex-hom-Directed-Graph x)) ( vertex-hom-Directed-Graph) ( λ y → edge-hom-Directed-Graph) direct-successor-hom-Directed-Graph : (x : vertex-Directed-Graph G) → direct-successor-Directed-Graph G x → direct-successor-Directed-Graph H (vertex-hom-Directed-Graph x) direct-successor-hom-Directed-Graph x = map-Σ ( edge-Directed-Graph H (vertex-hom-Directed-Graph x)) ( vertex-hom-Directed-Graph) ( λ y → edge-hom-Directed-Graph)
Composition of morphisms of directed graphs
module _ {l1 l2 l3 l4 l5 l6 : Level} (G : Directed-Graph l1 l2) (H : Directed-Graph l3 l4) (K : Directed-Graph l5 l6) where vertex-comp-hom-Directed-Graph : hom-Directed-Graph H K → hom-Directed-Graph G H → vertex-Directed-Graph G → vertex-Directed-Graph K vertex-comp-hom-Directed-Graph g f = (vertex-hom-Directed-Graph H K g) ∘ (vertex-hom-Directed-Graph G H f) edge-comp-hom-Directed-Graph : (g : hom-Directed-Graph H K) (f : hom-Directed-Graph G H) (x y : vertex-Directed-Graph G) → edge-Directed-Graph G x y → edge-Directed-Graph K ( vertex-comp-hom-Directed-Graph g f x) ( vertex-comp-hom-Directed-Graph g f y) edge-comp-hom-Directed-Graph g f x y e = edge-hom-Directed-Graph H K g (edge-hom-Directed-Graph G H f e) comp-hom-Directed-Graph : hom-Directed-Graph H K → hom-Directed-Graph G H → hom-Directed-Graph G K pr1 (comp-hom-Directed-Graph g f) = vertex-comp-hom-Directed-Graph g f pr2 (comp-hom-Directed-Graph g f) = edge-comp-hom-Directed-Graph g f
Identity morphisms of directed graphs
module _ {l1 l2 : Level} (G : Directed-Graph l1 l2) where id-hom-Directed-Graph : hom-Directed-Graph G G pr1 id-hom-Directed-Graph = id pr2 id-hom-Directed-Graph _ _ = id
Properties
Characterizing the identity type of morphisms graphs
module _ {l1 l2 l3 l4 : Level} (G : Directed-Graph l1 l2) (H : Directed-Graph l3 l4) where htpy-hom-Directed-Graph : (f g : hom-Directed-Graph G H) → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) htpy-hom-Directed-Graph f g = Σ ( vertex-hom-Directed-Graph G H f ~ vertex-hom-Directed-Graph G H g) ( λ α → ( x y : vertex-Directed-Graph G) (e : edge-Directed-Graph G x y) → binary-dependent-identification ( edge-Directed-Graph H) ( α x) ( α y) ( edge-hom-Directed-Graph G H f e) ( edge-hom-Directed-Graph G H g e)) module _ (f g : hom-Directed-Graph G H) (α : htpy-hom-Directed-Graph f g) where vertex-htpy-hom-Directed-Graph : vertex-hom-Directed-Graph G H f ~ vertex-hom-Directed-Graph G H g vertex-htpy-hom-Directed-Graph = pr1 α edge-htpy-hom-Directed-Graph : (x y : vertex-Directed-Graph G) (e : edge-Directed-Graph G x y) → binary-dependent-identification ( edge-Directed-Graph H) ( vertex-htpy-hom-Directed-Graph x) ( vertex-htpy-hom-Directed-Graph y) ( edge-hom-Directed-Graph G H f e) ( edge-hom-Directed-Graph G H g e) edge-htpy-hom-Directed-Graph = pr2 α refl-htpy-hom-Directed-Graph : (f : hom-Directed-Graph G H) → htpy-hom-Directed-Graph f f pr1 (refl-htpy-hom-Directed-Graph f) = refl-htpy pr2 (refl-htpy-hom-Directed-Graph f) x y e = refl htpy-eq-hom-Directed-Graph : (f g : hom-Directed-Graph G H) → f = g → htpy-hom-Directed-Graph f g htpy-eq-hom-Directed-Graph f .f refl = refl-htpy-hom-Directed-Graph f is-torsorial-htpy-hom-Directed-Graph : (f : hom-Directed-Graph G H) → is-torsorial (htpy-hom-Directed-Graph f) is-torsorial-htpy-hom-Directed-Graph f = is-torsorial-Eq-structure ( is-torsorial-htpy (vertex-hom-Directed-Graph G H f)) ( pair ( vertex-hom-Directed-Graph G H f) ( refl-htpy)) ( is-torsorial-Eq-Π ( λ x → is-torsorial-Eq-Π ( λ y → is-torsorial-htpy (edge-hom-Directed-Graph G H f)))) is-equiv-htpy-eq-hom-Directed-Graph : (f g : hom-Directed-Graph G H) → is-equiv (htpy-eq-hom-Directed-Graph f g) is-equiv-htpy-eq-hom-Directed-Graph f = fundamental-theorem-id ( is-torsorial-htpy-hom-Directed-Graph f) ( htpy-eq-hom-Directed-Graph f) extensionality-hom-Directed-Graph : (f g : hom-Directed-Graph G H) → (f = g) ≃ htpy-hom-Directed-Graph f g pr1 (extensionality-hom-Directed-Graph f g) = htpy-eq-hom-Directed-Graph f g pr2 (extensionality-hom-Directed-Graph f g) = is-equiv-htpy-eq-hom-Directed-Graph f g eq-htpy-hom-Directed-Graph : (f g : hom-Directed-Graph G H) → htpy-hom-Directed-Graph f g → (f = g) eq-htpy-hom-Directed-Graph f g = map-inv-equiv (extensionality-hom-Directed-Graph f g)
The left unit law of composition of morphisms of directed graphs
module _ {l1 l2 l3 l4 : Level} (G : Directed-Graph l1 l2) (H : Directed-Graph l3 l4) (f : hom-Directed-Graph G H) where vertex-left-unit-law-comp-hom-Directed-Graph : vertex-comp-hom-Directed-Graph G H H (id-hom-Directed-Graph H) f ~ vertex-hom-Directed-Graph G H f vertex-left-unit-law-comp-hom-Directed-Graph = refl-htpy edge-left-unit-law-comp-hom-Directed-Graph : {x y : vertex-Directed-Graph G} → edge-comp-hom-Directed-Graph G H H (id-hom-Directed-Graph H) f x y ~ edge-hom-Directed-Graph G H f edge-left-unit-law-comp-hom-Directed-Graph = refl-htpy left-unit-law-comp-hom-Directed-Graph : htpy-hom-Directed-Graph G H ( comp-hom-Directed-Graph G H H (id-hom-Directed-Graph H) f) ( f) pr1 left-unit-law-comp-hom-Directed-Graph = vertex-left-unit-law-comp-hom-Directed-Graph pr2 left-unit-law-comp-hom-Directed-Graph _ _ = edge-left-unit-law-comp-hom-Directed-Graph
The right unit law of composition of morphisms of directed graphs
module _ {l1 l2 l3 l4 : Level} (G : Directed-Graph l1 l2) (H : Directed-Graph l3 l4) (f : hom-Directed-Graph G H) where vertex-right-unit-law-comp-hom-Directed-Graph : vertex-comp-hom-Directed-Graph G G H f (id-hom-Directed-Graph G) ~ vertex-hom-Directed-Graph G H f vertex-right-unit-law-comp-hom-Directed-Graph = refl-htpy edge-right-unit-law-comp-hom-Directed-Graph : {x y : vertex-Directed-Graph G} → edge-comp-hom-Directed-Graph G G H f (id-hom-Directed-Graph G) x y ~ edge-hom-Directed-Graph G H f edge-right-unit-law-comp-hom-Directed-Graph = refl-htpy right-unit-law-comp-hom-Directed-Graph : htpy-hom-Directed-Graph G H ( comp-hom-Directed-Graph G G H f (id-hom-Directed-Graph G)) ( f) pr1 right-unit-law-comp-hom-Directed-Graph = vertex-right-unit-law-comp-hom-Directed-Graph pr2 right-unit-law-comp-hom-Directed-Graph _ _ = edge-right-unit-law-comp-hom-Directed-Graph
Associativity of composition of morphisms of directed graphs
module _ {l1 l2 l3 l4 l5 l6 l7 l8 : Level} (G : Directed-Graph l1 l2) (H : Directed-Graph l3 l4) (K : Directed-Graph l5 l6) (L : Directed-Graph l7 l8) (h : hom-Directed-Graph K L) (g : hom-Directed-Graph H K) (f : hom-Directed-Graph G H) where associative-comp-hom-Directed-Graph : htpy-hom-Directed-Graph G L ( comp-hom-Directed-Graph G H L (comp-hom-Directed-Graph H K L h g) f) ( comp-hom-Directed-Graph G K L h (comp-hom-Directed-Graph G H K g f)) associative-comp-hom-Directed-Graph = refl-htpy-hom-Directed-Graph G L _
External links
- Graph homomorphism on Wikidata
- Graph homomorphism at Wikipedia
Recent changes
- 2024-12-03. Egbert Rijke. Hofmann-Streicher universes for graphs and globular types (#1196).
- 2024-03-24. Fredrik Bakke. Some notions of graphs (#1091).
- 2024-01-11. Fredrik Bakke. Make type family implicit for
is-torsorial-Eq-structure
andis-torsorial-Eq-Π
(#995). - 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-10-21. Egbert Rijke and Fredrik Bakke. Implement
is-torsorial
throughout the library (#875).