Global choice
Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides and Elisabeth Stenholm.
Created on 2022-02-08.
Last modified on 2023-11-24.
module foundation.global-choice where
Imports
open import foundation.dependent-pair-types open import foundation.functoriality-propositional-truncation open import foundation.hilberts-epsilon-operators open import foundation.universe-levels open import foundation-core.equivalences open import foundation-core.negation open import univalent-combinatorics.2-element-types open import univalent-combinatorics.standard-finite-types
Idea
Global choice is the principle that there is a map from type-trunc-Prop A
back into A
, for any type A
. Here, we say that a type A
satisfies global
choice if there is such a map.
Definition
The global choice principle
Global-Choice : (l : Level) → UU (lsuc l) Global-Choice l = (A : UU l) → ε-operator-Hilbert A
Properties
The global choice principle is inconsistent in agda-unimath
abstract no-global-choice : {l : Level} → ¬ (Global-Choice l) no-global-choice f = no-section-type-2-Element-Type ( λ X → f (pr1 X) (map-trunc-Prop (λ e → map-equiv e (zero-Fin 1)) (pr2 X)))
Recent changes
- 2023-11-24. Fredrik Bakke. Global function classes (#890).
- 2023-09-14. Egbert Rijke and Fredrik Bakke. Symmetric core of a relation (#754).
- 2023-06-08. Fredrik Bakke. Remove empty
foundation
modules and replace them by their core counterparts (#644). - 2023-03-14. Fredrik Bakke. Remove all unused imports (#502).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).