Opposite preorders
Content created by Fredrik Bakke.
Created on 2024-11-20.
Last modified on 2024-11-20.
module order-theory.opposite-preorders where
Imports
open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.homotopies open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import order-theory.order-preserving-maps-preorders open import order-theory.preorders
Idea
Let X
be a preorder, its
opposite¶ Xᵒᵖ
is given by reversing the relation.
Definition
The opposite preorder
module _ {l1 l2 : Level} (P : Preorder l1 l2) where type-opposite-Preorder : UU l1 type-opposite-Preorder = type-Preorder P leq-prop-opposite-Preorder : (X Y : type-opposite-Preorder) → Prop l2 leq-prop-opposite-Preorder X Y = leq-prop-Preorder P Y X leq-opposite-Preorder : (X Y : type-opposite-Preorder) → UU l2 leq-opposite-Preorder X Y = type-Prop (leq-prop-opposite-Preorder X Y) transitive-leq-opposite-Preorder : (X Y Z : type-opposite-Preorder) → leq-opposite-Preorder Y Z → leq-opposite-Preorder X Y → leq-opposite-Preorder X Z transitive-leq-opposite-Preorder X Y Z g f = transitive-leq-Preorder P Z Y X f g refl-leq-opposite-Preorder : (X : type-opposite-Preorder) → leq-opposite-Preorder X X refl-leq-opposite-Preorder = refl-leq-Preorder P opposite-Preorder : Preorder l1 l2 opposite-Preorder = ( type-opposite-Preorder , leq-prop-opposite-Preorder , refl-leq-opposite-Preorder , transitive-leq-opposite-Preorder)
The opposite functorial action on order preserving maps of preorders
module _ {l1 l2 l3 l4 : Level} (P : Preorder l1 l2) (Q : Preorder l3 l4) where opposite-hom-Preorder : hom-Preorder P Q → hom-Preorder (opposite-Preorder P) (opposite-Preorder Q) opposite-hom-Preorder f = ( map-hom-Preorder P Q f) , ( λ x y p → preserves-order-map-hom-Preorder P Q f y x p)
Properties
The opposite preorder construction is a strict involution
module _ {l1 l2 : Level} (P : Preorder l1 l2) where is-involution-opposite-Preorder : opposite-Preorder (opposite-Preorder P) = P is-involution-opposite-Preorder = refl module _ {l1 l2 l3 l4 : Level} (P : Preorder l1 l2) (Q : Preorder l3 l4) (f : hom-Preorder P Q) where is-involution-opposite-hom-Preorder : opposite-hom-Preorder ( opposite-Preorder P) ( opposite-Preorder Q) ( opposite-hom-Preorder P Q f) = f is-involution-opposite-hom-Preorder = refl
Recent changes
- 2024-11-20. Fredrik Bakke. Two fixed point theorems (#1227).