Deloopable groups
Content created by Egbert Rijke.
Created on 2024-03-23.
Last modified on 2024-03-23.
module higher-group-theory.deloopable-groups where
Imports
open import foundation.dependent-pair-types open import foundation.universe-levels open import group-theory.groups open import higher-group-theory.deloopable-h-spaces
Idea
A delooping¶ of a
group G
is a
delooping of the underlying
H-space of G
. In other words, a delooping of a
group G
consists of a higher group
H
, which is defined to be a pointed
connected type, equipped with an
equivalence of H-spaces
G ≃ h-space-∞-Group H
from G
to the underlying H-space of H
.
Definitions
Deloopings of groups of a given universe level
module _ {l1 : Level} (l2 : Level) (G : Group l1) where delooping-Group-Level : UU (l1 ⊔ lsuc l2) delooping-Group-Level = delooping-H-Space-Level l2 (h-space-Group G)
Deloopings of groups
module _ {l1 : Level} (G : Group l1) where delooping-Group : UU (lsuc l1) delooping-Group = delooping-Group-Level l1 G
See also
Recent changes
- 2024-03-23. Egbert Rijke. Deloopings and Eilenberg-Mac Lane spaces (#1079).