Equivalences between finite types
Content created by Fredrik Bakke, Jonathan Prieto-Cubides and Egbert Rijke.
Created on 2022-02-15.
Last modified on 2024-02-06.
module univalent-combinatorics.equivalences where open import foundation.equivalences public
Imports
open import foundation.decidable-types open import foundation.dependent-pair-types open import foundation.universe-levels open import univalent-combinatorics.embeddings open import univalent-combinatorics.finite-types open import univalent-combinatorics.surjective-maps
Properties
For a map between finite types, being an equivalence is decidable
is-decidable-is-equiv-is-finite : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-finite A → is-finite B → is-decidable (is-equiv f) is-decidable-is-equiv-is-finite f HA HB = is-decidable-iff ( λ p → is-equiv-is-emb-is-surjective (pr1 p) (pr2 p)) ( λ K → pair (is-surjective-is-equiv K) (is-emb-is-equiv K)) ( is-decidable-product ( is-decidable-is-surjective-is-finite f HA HB) ( is-decidable-is-emb-is-finite f HA HB))
Recent changes
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2023-06-07. Fredrik Bakke. Move public imports before “Imports” block (#642).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import
(#497). - 2023-03-09. Jonathan Prieto-Cubides. Add hooks (#495).
- 2023-03-07. Fredrik Bakke. Add blank lines between
<details>
tags and markdown syntax (#490).