Functorial action on short maps of Cauchy pseudocompletions of metric spaces

Content created by malarbol.

Created on 2026-02-12.
Last modified on 2026-02-12.

module metric-spaces.functoriality-short-maps-cauchy-pseudocompletions-of-metric-spaces where
Imports
open import elementary-number-theory.addition-positive-rational-numbers
open import elementary-number-theory.positive-rational-numbers

open import foundation.dependent-pair-types
open import foundation.function-extensionality
open import foundation.function-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.propositions
open import foundation.subtypes
open import foundation.universe-levels

open import metric-spaces.cauchy-approximations-metric-spaces
open import metric-spaces.cauchy-pseudocompletions-of-metric-spaces
open import metric-spaces.functoriality-short-maps-cauchy-pseudocompletions-of-pseudometric-spaces
open import metric-spaces.limits-of-cauchy-approximations-metric-spaces
open import metric-spaces.metric-spaces
open import metric-spaces.short-maps-metric-spaces
open import metric-spaces.short-maps-pseudometric-spaces

Idea

The functorial action of Cauchy pseudocompletions on short maps between metric spaces is the action between their underlying pseudometric spaces and short maps.

It maps short maps between metric spaces to short maps between their Cauchy pseudocompletions, and preserves limits.

Definitions

The action on short maps of Cauchy pseudocompletions

module _
  {l1 l2 l1' l2' : Level}
  (A : Metric-Space l1 l2) (B : Metric-Space l1' l2')
  (f : short-map-Metric-Space A B)
  where

  short-map-cauchy-pseudocompletion-Metric-Space :
    short-map-Pseudometric-Space
      ( cauchy-pseudocompletion-Metric-Space A)
      ( cauchy-pseudocompletion-Metric-Space B)
  short-map-cauchy-pseudocompletion-Metric-Space =
    short-map-cauchy-pseudocompletion-Pseudometric-Space
      ( pseudometric-Metric-Space A)
      ( pseudometric-Metric-Space B)
      ( f)

  map-short-map-cauchy-pseudocompletion-Metric-Space :
    cauchy-approximation-Metric-Space A 
    cauchy-approximation-Metric-Space B
  map-short-map-cauchy-pseudocompletion-Metric-Space =
    map-short-map-Pseudometric-Space
      ( cauchy-pseudocompletion-Metric-Space A)
      ( cauchy-pseudocompletion-Metric-Space B)
        ( short-map-cauchy-pseudocompletion-Metric-Space)

  preserves-neighborhoods-map-short-map-cauchy-pseudocompletion-Metric-Space :
    is-short-map-Pseudometric-Space
      ( cauchy-pseudocompletion-Metric-Space A)
      ( cauchy-pseudocompletion-Metric-Space B)
      ( map-short-map-cauchy-pseudocompletion-Metric-Space)
  preserves-neighborhoods-map-short-map-cauchy-pseudocompletion-Metric-Space =
    is-short-map-short-map-Pseudometric-Space
      ( cauchy-pseudocompletion-Metric-Space A)
      ( cauchy-pseudocompletion-Metric-Space B)
      ( short-map-cauchy-pseudocompletion-Metric-Space)

Properties

Functoriality of the action on short maps

module _
  {l1 l2 : Level}
  (A : Metric-Space l1 l2)
  where abstract

  htpy-id-map-short-map-cauchy-pseudocompletion-Metric-Space :
    map-short-map-cauchy-pseudocompletion-Metric-Space
      ( A)
      ( A)
      ( id-short-map-Metric-Space A) 
    id
  htpy-id-map-short-map-cauchy-pseudocompletion-Metric-Space = refl

module _
  {l1a l2a l1b l2b l1c l2c : Level}
  (A : Metric-Space l1a l2a)
  (B : Metric-Space l1b l2b)
  (C : Metric-Space l1c l2c)
  (g : short-map-Metric-Space B C)
  (f : short-map-Metric-Space A B)
  where abstract

  htpy-comp-map-short-map-cauchy-pseudocompletion-Metric-Space :
    ( map-short-map-cauchy-pseudocompletion-Metric-Space B C g 
      map-short-map-cauchy-pseudocompletion-Metric-Space A B f) 
    ( map-short-map-cauchy-pseudocompletion-Metric-Space A C
      ( comp-short-map-Metric-Space A B C g f))
  htpy-comp-map-short-map-cauchy-pseudocompletion-Metric-Space = refl

The action on short maps on Cauchy pseudocompletions preserves limits

module _
  {l1 l2 l1' l2' : Level}
  (A : Metric-Space l1 l2) (B : Metric-Space l1' l2')
  (f : short-map-Metric-Space A B)
  (a : cauchy-approximation-Metric-Space A)
  (lim : type-Metric-Space A)
  where abstract

  preserves-limit-map-short-map-cauchy-pseudocompletion-Metric-Space :
    is-limit-cauchy-approximation-Metric-Space A a lim 
    is-limit-cauchy-approximation-Metric-Space
      ( B)
      ( map-short-map-cauchy-pseudocompletion-Metric-Space A B f a)
      ( map-short-map-Metric-Space A B f lim)
  preserves-limit-map-short-map-cauchy-pseudocompletion-Metric-Space
    is-lim-a ε δ =
    is-short-map-short-map-Metric-Space A B
      ( f)
      ( ε +ℚ⁺ δ)
      ( map-cauchy-approximation-Metric-Space A a ε)
      ( lim)
      ( is-lim-a ε δ)

Recent changes