Functorial action on short maps of Cauchy pseudocompletions of metric spaces
Content created by malarbol.
Created on 2026-02-12.
Last modified on 2026-02-12.
module metric-spaces.functoriality-short-maps-cauchy-pseudocompletions-of-metric-spaces where
Imports
open import elementary-number-theory.addition-positive-rational-numbers open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.cauchy-approximations-metric-spaces open import metric-spaces.cauchy-pseudocompletions-of-metric-spaces open import metric-spaces.functoriality-short-maps-cauchy-pseudocompletions-of-pseudometric-spaces open import metric-spaces.limits-of-cauchy-approximations-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.short-maps-metric-spaces open import metric-spaces.short-maps-pseudometric-spaces
Idea
The functorial action¶ of Cauchy pseudocompletions on short maps between metric spaces is the action between their underlying pseudometric spaces and short maps.
It maps short maps between metric spaces to short maps between their Cauchy pseudocompletions, and preserves limits.
Definitions
The action on short maps of Cauchy pseudocompletions
module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') (f : short-map-Metric-Space A B) where short-map-cauchy-pseudocompletion-Metric-Space : short-map-Pseudometric-Space ( cauchy-pseudocompletion-Metric-Space A) ( cauchy-pseudocompletion-Metric-Space B) short-map-cauchy-pseudocompletion-Metric-Space = short-map-cauchy-pseudocompletion-Pseudometric-Space ( pseudometric-Metric-Space A) ( pseudometric-Metric-Space B) ( f) map-short-map-cauchy-pseudocompletion-Metric-Space : cauchy-approximation-Metric-Space A → cauchy-approximation-Metric-Space B map-short-map-cauchy-pseudocompletion-Metric-Space = map-short-map-Pseudometric-Space ( cauchy-pseudocompletion-Metric-Space A) ( cauchy-pseudocompletion-Metric-Space B) ( short-map-cauchy-pseudocompletion-Metric-Space) preserves-neighborhoods-map-short-map-cauchy-pseudocompletion-Metric-Space : is-short-map-Pseudometric-Space ( cauchy-pseudocompletion-Metric-Space A) ( cauchy-pseudocompletion-Metric-Space B) ( map-short-map-cauchy-pseudocompletion-Metric-Space) preserves-neighborhoods-map-short-map-cauchy-pseudocompletion-Metric-Space = is-short-map-short-map-Pseudometric-Space ( cauchy-pseudocompletion-Metric-Space A) ( cauchy-pseudocompletion-Metric-Space B) ( short-map-cauchy-pseudocompletion-Metric-Space)
Properties
Functoriality of the action on short maps
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) where abstract htpy-id-map-short-map-cauchy-pseudocompletion-Metric-Space : map-short-map-cauchy-pseudocompletion-Metric-Space ( A) ( A) ( id-short-map-Metric-Space A) = id htpy-id-map-short-map-cauchy-pseudocompletion-Metric-Space = refl module _ {l1a l2a l1b l2b l1c l2c : Level} (A : Metric-Space l1a l2a) (B : Metric-Space l1b l2b) (C : Metric-Space l1c l2c) (g : short-map-Metric-Space B C) (f : short-map-Metric-Space A B) where abstract htpy-comp-map-short-map-cauchy-pseudocompletion-Metric-Space : ( map-short-map-cauchy-pseudocompletion-Metric-Space B C g ∘ map-short-map-cauchy-pseudocompletion-Metric-Space A B f) = ( map-short-map-cauchy-pseudocompletion-Metric-Space A C ( comp-short-map-Metric-Space A B C g f)) htpy-comp-map-short-map-cauchy-pseudocompletion-Metric-Space = refl
The action on short maps on Cauchy pseudocompletions preserves limits
module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') (f : short-map-Metric-Space A B) (a : cauchy-approximation-Metric-Space A) (lim : type-Metric-Space A) where abstract preserves-limit-map-short-map-cauchy-pseudocompletion-Metric-Space : is-limit-cauchy-approximation-Metric-Space A a lim → is-limit-cauchy-approximation-Metric-Space ( B) ( map-short-map-cauchy-pseudocompletion-Metric-Space A B f a) ( map-short-map-Metric-Space A B f lim) preserves-limit-map-short-map-cauchy-pseudocompletion-Metric-Space is-lim-a ε δ = is-short-map-short-map-Metric-Space A B ( f) ( ε +ℚ⁺ δ) ( map-cauchy-approximation-Metric-Space A a ε) ( lim) ( is-lim-a ε δ)
Recent changes
- 2026-02-12. malarbol. Fix names for Cauchy pseudocompletions constructions (#1814).