Commuting elements of rings
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-09-10.
Last modified on 2023-09-10.
module ring-theory.commuting-elements-rings where
Imports
open import foundation.action-on-identifications-functions open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels open import group-theory.commuting-elements-monoids open import ring-theory.rings
Idea
Two elements x
and y
of a ring R
are said to
commute if xy = yx
.
Definitions
Commuting elements
module _ {l : Level} (R : Ring l) where commute-prop-Ring : (x y : type-Ring R) → Prop l commute-prop-Ring = commute-prop-Monoid (multiplicative-monoid-Ring R) commute-Ring : (x y : type-Ring R) → UU l commute-Ring = commute-Monoid (multiplicative-monoid-Ring R) commute-Ring' : (x y : type-Ring R) → UU l commute-Ring' = commute-Monoid' (multiplicative-monoid-Ring R) is-prop-commute-Ring : (x y : type-Ring R) → is-prop (commute-Ring x y) is-prop-commute-Ring = is-prop-commute-Monoid (multiplicative-monoid-Ring R)
Properties
The relation commute-Ring
is reflexive
module _ {l : Level} (R : Ring l) where refl-commute-Ring : (x : type-Ring R) → commute-Ring R x x refl-commute-Ring = refl-commute-Monoid (multiplicative-monoid-Ring R)
The relation commute-Ring
is symmetric
module _ {l : Level} (R : Ring l) where symmetric-commute-Ring : (x y : type-Ring R) → commute-Ring R x y → commute-Ring R y x symmetric-commute-Ring = symmetric-commute-Monoid (multiplicative-monoid-Ring R)
The zero element commutes with every element of the ring
module _ {l : Level} (R : Ring l) where commute-zero-Ring : (x : type-Ring R) → commute-Ring R (zero-Ring R) x commute-zero-Ring x = left-zero-law-mul-Ring R x ∙ inv (right-zero-law-mul-Ring R x)
The multiplicative unit element commutes with every element of the ring
module _ {l : Level} (R : Ring l) where commute-one-Ring : (x : type-Ring R) → commute-Ring R x (one-Ring R) commute-one-Ring = commute-unit-Monoid (multiplicative-monoid-Ring R)
If y
and z
commute with x
, then y + z
commutes with x
module _ {l : Level} (R : Ring l) where commute-add-Ring : {x y z : type-Ring R} → commute-Ring R x y → commute-Ring R x z → commute-Ring R x (add-Ring R y z) commute-add-Ring H K = left-distributive-mul-add-Ring R _ _ _ ∙ ap-add-Ring R H K ∙ inv (right-distributive-mul-add-Ring R _ _ _)
If x
commutes with y
, then x
commutes with -y
module _ {l : Level} (R : Ring l) where commute-neg-Ring : {x y : type-Ring R} → commute-Ring R x y → commute-Ring R x (neg-Ring R y) commute-neg-Ring H = right-negative-law-mul-Ring R _ _ ∙ ap (neg-Ring R) H ∙ inv (left-negative-law-mul-Ring R _ _)
If x
commutes with y
, then -x
commutes with -y
module _ {l : Level} (R : Ring l) where commute-neg-neg-Ring : {x y : type-Ring R} → commute-Ring R x y → commute-Ring R (neg-Ring R x) (neg-Ring R y) commute-neg-neg-Ring H = mul-neg-Ring R _ _ ∙ H ∙ inv (mul-neg-Ring R _ _)
If x
commutes with y
and z
, then x
commutes with -y + z
and with y - z
module _ {l : Level} (R : Ring l) where commute-left-subtraction-Ring : {x y z : type-Ring R} → commute-Ring R x y → commute-Ring R x z → commute-Ring R x (left-subtraction-Ring R y z) commute-left-subtraction-Ring H K = left-distributive-mul-left-subtraction-Ring R _ _ _ ∙ ap-left-subtraction-Ring R H K ∙ inv (right-distributive-mul-left-subtraction-Ring R _ _ _) commute-right-subtraction-Ring : {x y z : type-Ring R} → commute-Ring R x y → commute-Ring R x z → commute-Ring R x (right-subtraction-Ring R y z) commute-right-subtraction-Ring H K = left-distributive-mul-right-subtraction-Ring R _ _ _ ∙ ap-right-subtraction-Ring R H K ∙ inv (right-distributive-mul-right-subtraction-Ring R _ _ _)
If x
commutes with y
, then x * (y * z) = y * (x * z)
for any element z
module _ {l : Level} (R : Ring l) where private infix 50 _*_ _*_ = mul-Ring R left-swap-commute-Ring : (x y z : type-Ring R) → commute-Ring R x y → x * (y * z) = y * (x * z) left-swap-commute-Ring = left-swap-commute-Monoid (multiplicative-monoid-Ring R) right-swap-commute-Ring : (x y z : type-Ring R) → commute-Ring R y z → (x * y) * z = (x * z) * y right-swap-commute-Ring = right-swap-commute-Monoid (multiplicative-monoid-Ring R)
If x
commutes with y
and with z
, then x
commutes with yz
module _ {l : Level} (R : Ring l) where commute-mul-Ring : (x y z : type-Ring R) → commute-Ring R x y → commute-Ring R x z → commute-Ring R x (mul-Ring R y z) commute-mul-Ring = commute-mul-Monoid (multiplicative-monoid-Ring R)
Recent changes
- 2023-09-10. Egbert Rijke and Fredrik Bakke. Cyclic groups (#723).