Alternating groups

Content created by Jonathan Prieto-Cubides, Fredrik Bakke, Egbert Rijke and Amélia Liao.

Created on 2022-07-15.
Last modified on 2023-11-24.

module finite-group-theory.alternating-groups where
Imports
open import elementary-number-theory.natural-numbers

open import finite-group-theory.sign-homomorphism

open import group-theory.groups
open import group-theory.kernels-homomorphisms-groups
open import group-theory.symmetric-groups

open import univalent-combinatorics.finite-types
open import univalent-combinatorics.standard-finite-types

Idea

The alternating group on a finite set X is the group of even permutations of X, i.e. it is the kernel of the sign homomorphism Aut(X) → Aut(2).

Definition

module _
  {l} (n : ) (X : UU-Fin l n)
  where
  alternating-Group : Group l
  alternating-Group = group-kernel-hom-Group
    ( symmetric-Group (set-UU-Fin n X))
    ( symmetric-Group (Fin-Set 2))
    ( sign-homomorphism n X)

Recent changes