Alternating groups
Content created by Jonathan Prieto-Cubides, Fredrik Bakke, Egbert Rijke and Amélia Liao.
Created on 2022-07-15.
Last modified on 2023-11-24.
module finite-group-theory.alternating-groups where
Imports
open import elementary-number-theory.natural-numbers open import finite-group-theory.sign-homomorphism open import group-theory.groups open import group-theory.kernels-homomorphisms-groups open import group-theory.symmetric-groups open import univalent-combinatorics.finite-types open import univalent-combinatorics.standard-finite-types
Idea
The alternating group on a finite set X
is the group of even permutations of
X
, i.e. it is the kernel of the sign homomorphism Aut(X) → Aut(2)
.
Definition
module _ {l} (n : ℕ) (X : UU-Fin l n) where alternating-Group : Group l alternating-Group = group-kernel-hom-Group ( symmetric-Group (set-UU-Fin n X)) ( symmetric-Group (Fin-Set 2)) ( sign-homomorphism n X)
Recent changes
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-04-28. Fredrik Bakke. Miscellaneous refactoring and small additions (#579).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import
(#497). - 2023-03-09. Jonathan Prieto-Cubides. Add hooks (#495).