Nontrivial groups
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-10-08.
Last modified on 2024-04-11.
module group-theory.nontrivial-groups where
Imports
open import foundation.action-on-identifications-functions open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.disjunction open import foundation.embeddings open import foundation.empty-types open import foundation.existential-quantification open import foundation.identity-types open import foundation.injective-maps open import foundation.logical-equivalences open import foundation.negated-equality open import foundation.negation open import foundation.propositional-extensionality open import foundation.propositional-truncations open import foundation.propositions open import foundation.sets open import foundation.unit-type open import foundation.universe-levels open import group-theory.groups open import group-theory.subgroups open import group-theory.trivial-groups
Idea
A group is said to be nontrivial if there exists a nonidentity element.
Definitions
The predicate of being a nontrivial group
module _ {l1 : Level} (G : Group l1) where is-nontrivial-prop-Group : Prop l1 is-nontrivial-prop-Group = exists-structure-Prop (type-Group G) (λ g → unit-Group G ≠ g) is-nontrivial-Group : UU l1 is-nontrivial-Group = type-Prop is-nontrivial-prop-Group is-prop-is-nontrivial-Group : is-prop is-nontrivial-Group is-prop-is-nontrivial-Group = is-prop-type-Prop is-nontrivial-prop-Group
The predicate of not being the trivial group
module _ {l1 : Level} (G : Group l1) where is-not-trivial-prop-Group : Prop l1 is-not-trivial-prop-Group = neg-type-Prop ((x : type-Group G) → unit-Group G = x) is-not-trivial-Group : UU l1 is-not-trivial-Group = type-Prop is-not-trivial-prop-Group is-prop-is-not-trivial-Group : is-prop is-not-trivial-Group is-prop-is-not-trivial-Group = is-prop-type-Prop is-not-trivial-prop-Group
Properties
A group is not a trivial group if and only if it satisfies the predicate of not being trivial
Proof: The proposition ¬ (is-trivial-Group G)
holds if and only if G
is
not contractible, which holds if and only if ¬ ((x : G) → 1 = x)
.
module _ {l1 : Level} (G : Group l1) where neg-is-trivial-is-not-trivial-Group : is-not-trivial-Group G → ¬ (is-trivial-Group G) neg-is-trivial-is-not-trivial-Group H p = H (λ x → eq-is-contr p) is-not-trivial-neg-is-trivial-Group : ¬ (is-trivial-Group G) → is-not-trivial-Group G is-not-trivial-neg-is-trivial-Group H p = H (unit-Group G , p)
The map subgroup-Prop G : Prop → Subgroup G
is an embedding for any nontrivial group
Recall that the subgroup subgroup-Prop G P
associated to a proposition P
was
defined in group-theory.subgroups
.
Proof: Suppose that G
is a nontrivial group and x
is a group element
such that 1 ≠ x
. Then subgroup-Prop G P = subgroup-Prop G Q
if and only if
x ∈ subgroup-Prop G P ⇔ x ∈ subgroup-Prop G Q
, which holds if and only if
P ⇔ Q
since x
is assumed to be a nonidentity element. This shows that
subgroup-Prop G : Prop → Subgroup G
is an injective map. Since it is an
injective maps between sets, it follows that subgroup-Prop G
is an embedding.
module _ {l1 l2 : Level} (G : Group l1) where abstract is-emb-subgroup-prop-is-nontrivial-Group : is-nontrivial-Group G → is-emb (subgroup-Prop {l2 = l2} G) is-emb-subgroup-prop-is-nontrivial-Group H = apply-universal-property-trunc-Prop H ( is-emb-Prop _) ( λ (x , f) → is-emb-is-injective ( is-set-Subgroup G) ( λ {P} {Q} α → eq-iff ( λ p → map-left-unit-law-disjunction-is-empty-Prop ( Id-Prop (set-Group G) _ _) ( Q) ( f) ( forward-implication ( iff-eq (ap (λ T → subset-Subgroup G T x) α)) ( inr-disjunction p))) ( λ q → map-left-unit-law-disjunction-is-empty-Prop ( Id-Prop (set-Group G) _ _) ( P) ( f) ( backward-implication ( iff-eq (ap (λ T → subset-Subgroup G T x) α)) ( inr-disjunction q)))))
If the map subgroup-Prop G : Prop lzero → Subgroup l1 G
is an embedding, then G
is not a trivial group
Proof: Suppose that subgroup-Prop G : Prop lzero → Subgroup l1 G
is an
embedding, and by way of contradiction suppose that G
is trivial. Then it
follows that Subgroup l1 G
is contractible. Since subgroup-Prop G
is assumed
to be an embedding, it follows that Prop lzero
is contractible. This
contradicts the fact that Prop lzero
contains the distinct propositions
empty-Prop
and unit-Prop
.
Note: Our handling of universe levels might be too restrictive here.
module _ {l1 : Level} (G : Group l1) where is-not-trivial-is-emb-subgroup-Prop : is-emb (subgroup-Prop {l2 = lzero} G) → is-not-trivial-Group G is-not-trivial-is-emb-subgroup-Prop H K = backward-implication ( iff-eq ( is-injective-is-emb H { x = empty-Prop} { y = unit-Prop} ( eq-is-contr (is-contr-subgroup-is-trivial-Group G (_ , K))))) ( star)
Recent changes
- 2024-04-11. Fredrik Bakke and Egbert Rijke. Propositional operations (#1008).
- 2023-12-12. Fredrik Bakke. Some minor refactoring surrounding Dedekind reals (#983).
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-10-09. Fredrik Bakke and Egbert Rijke. Negated equality (#822).
- 2023-10-08. Egbert Rijke and Fredrik Bakke. Nontrivial groups, and a correction of a statement in torsion-free groups (#815).