Powers of nonnegative rational numbers
Content created by Louis Wasserman.
Created on 2025-10-19.
Last modified on 2025-10-19.
module elementary-number-theory.powers-nonnegative-rational-numbers where
Imports
open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.inequalities-positive-and-negative-rational-numbers open import elementary-number-theory.inequality-nonnegative-rational-numbers open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.multiplication-natural-numbers open import elementary-number-theory.multiplication-nonnegative-rational-numbers open import elementary-number-theory.multiplication-positive-rational-numbers open import elementary-number-theory.multiplicative-monoid-of-nonnegative-rational-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.nonnegative-rational-numbers open import elementary-number-theory.positive-and-negative-rational-numbers open import elementary-number-theory.rational-numbers open import elementary-number-theory.strict-inequality-nonnegative-rational-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.identity-types open import group-theory.powers-of-elements-commutative-monoids open import group-theory.powers-of-elements-monoids
Idea
The
power operation¶
on the nonnegative
rational numbers is the
operation n x ↦ xⁿ
, which is defined by
iteratively multiplying x
with itself n
times. This file covers the case where n
is a
natural number.
Definition
power-ℚ⁰⁺ : ℕ → ℚ⁰⁺ → ℚ⁰⁺ power-ℚ⁰⁺ = power-Commutative-Monoid commutative-monoid-mul-ℚ⁰⁺
Properties
1ⁿ = 1
power-one-ℚ⁰⁺ : (n : ℕ) → power-ℚ⁰⁺ n one-ℚ⁰⁺ = one-ℚ⁰⁺ power-one-ℚ⁰⁺ = power-unit-Commutative-Monoid commutative-monoid-mul-ℚ⁰⁺
qⁿ⁺¹ = qⁿq
power-succ-ℚ⁰⁺ : (n : ℕ) (q : ℚ⁰⁺) → power-ℚ⁰⁺ (succ-ℕ n) q = power-ℚ⁰⁺ n q *ℚ⁰⁺ q power-succ-ℚ⁰⁺ = power-succ-Commutative-Monoid commutative-monoid-mul-ℚ⁰⁺
qⁿ = qqⁿ
power-succ-ℚ⁰⁺' : (n : ℕ) (q : ℚ⁰⁺) → power-ℚ⁰⁺ (succ-ℕ n) q = q *ℚ⁰⁺ power-ℚ⁰⁺ n q power-succ-ℚ⁰⁺' = power-succ-Commutative-Monoid' commutative-monoid-mul-ℚ⁰⁺
qᵐ⁺ⁿ = qᵐqⁿ
abstract distributive-power-add-ℚ⁰⁺ : (m n : ℕ) (q : ℚ⁰⁺) → power-ℚ⁰⁺ (m +ℕ n) q = power-ℚ⁰⁺ m q *ℚ⁰⁺ power-ℚ⁰⁺ n q distributive-power-add-ℚ⁰⁺ m n _ = distributive-power-add-Commutative-Monoid commutative-monoid-mul-ℚ⁰⁺ m n
(pq)ⁿ=pⁿqⁿ
abstract left-distributive-power-mul-ℚ⁰⁺ : (n : ℕ) (p q : ℚ⁰⁺) → power-ℚ⁰⁺ n (p *ℚ⁰⁺ q) = power-ℚ⁰⁺ n p *ℚ⁰⁺ power-ℚ⁰⁺ n q left-distributive-power-mul-ℚ⁰⁺ n p q = distributive-power-mul-Commutative-Monoid commutative-monoid-mul-ℚ⁰⁺ n
pᵐⁿ = (pᵐ)ⁿ
power-mul-ℚ⁰⁺ : (m n : ℕ) (q : ℚ⁰⁺) → power-ℚ⁰⁺ (m *ℕ n) q = power-ℚ⁰⁺ n (power-ℚ⁰⁺ m q) power-mul-ℚ⁰⁺ m n q = power-mul-Commutative-Monoid commutative-monoid-mul-ℚ⁰⁺ m n
If p
and q
are nonnegative rational numbers with p < q
and n
is nonzero, then pⁿ < qⁿ
abstract preserves-le-power-ℚ⁰⁺ : (n : ℕ) → (p q : ℚ⁰⁺) → le-ℚ⁰⁺ p q → (is-nonzero-ℕ n) → le-ℚ⁰⁺ (power-ℚ⁰⁺ n p) (power-ℚ⁰⁺ n q) preserves-le-power-ℚ⁰⁺ 0 p q p<q H = ex-falso (H refl) preserves-le-power-ℚ⁰⁺ 1 p q p<q _ = p<q preserves-le-power-ℚ⁰⁺ (succ-ℕ n@(succ-ℕ _)) p q p<q _ = concatenate-leq-le-ℚ⁰⁺ ( power-ℚ⁰⁺ (succ-ℕ n) p) ( power-ℚ⁰⁺ n p *ℚ⁰⁺ q) ( power-ℚ⁰⁺ (succ-ℕ n) q) ( preserves-leq-left-mul-ℚ⁰⁺ (power-ℚ⁰⁺ n p) _ _ (leq-le-ℚ p<q)) ( preserves-le-right-mul-ℚ⁺ ( rational-ℚ⁰⁺ q , is-positive-le-ℚ⁰⁺ p _ p<q) ( rational-ℚ⁰⁺ (power-ℚ⁰⁺ n p)) ( rational-ℚ⁰⁺ (power-ℚ⁰⁺ n q)) ( preserves-le-power-ℚ⁰⁺ n p q p<q (is-nonzero-succ-ℕ _)))
If p
and q
are nonnegative rational numbers with p ≤ q
, then pⁿ ≤ qⁿ
abstract preserves-leq-power-ℚ⁰⁺ : (n : ℕ) (p q : ℚ⁰⁺) → leq-ℚ⁰⁺ p q → leq-ℚ⁰⁺ (power-ℚ⁰⁺ n p) (power-ℚ⁰⁺ n q) preserves-leq-power-ℚ⁰⁺ 0 _ _ _ = refl-leq-ℚ one-ℚ preserves-leq-power-ℚ⁰⁺ 1 p q p≤q = p≤q preserves-leq-power-ℚ⁰⁺ (succ-ℕ n@(succ-ℕ _)) p q p≤q = transitive-leq-ℚ⁰⁺ ( power-ℚ⁰⁺ (succ-ℕ n) p) ( power-ℚ⁰⁺ n p *ℚ⁰⁺ q) ( power-ℚ⁰⁺ (succ-ℕ n) q) ( preserves-leq-right-mul-ℚ⁰⁺ q _ _ (preserves-leq-power-ℚ⁰⁺ n p q p≤q)) ( preserves-leq-left-mul-ℚ⁰⁺ (power-ℚ⁰⁺ n p) _ _ p≤q)
Recent changes
- 2025-10-19. Louis Wasserman. Powers of arbitrary rational numbers (#1608).