Powers of nonnegative rational numbers

Content created by Louis Wasserman.

Created on 2025-10-19.
Last modified on 2025-10-19.

module elementary-number-theory.powers-nonnegative-rational-numbers where
Imports
open import elementary-number-theory.addition-natural-numbers
open import elementary-number-theory.inequalities-positive-and-negative-rational-numbers
open import elementary-number-theory.inequality-nonnegative-rational-numbers
open import elementary-number-theory.inequality-rational-numbers
open import elementary-number-theory.multiplication-natural-numbers
open import elementary-number-theory.multiplication-nonnegative-rational-numbers
open import elementary-number-theory.multiplication-positive-rational-numbers
open import elementary-number-theory.multiplicative-monoid-of-nonnegative-rational-numbers
open import elementary-number-theory.natural-numbers
open import elementary-number-theory.nonnegative-rational-numbers
open import elementary-number-theory.positive-and-negative-rational-numbers
open import elementary-number-theory.rational-numbers
open import elementary-number-theory.strict-inequality-nonnegative-rational-numbers
open import elementary-number-theory.strict-inequality-rational-numbers

open import foundation.dependent-pair-types
open import foundation.empty-types
open import foundation.identity-types

open import group-theory.powers-of-elements-commutative-monoids
open import group-theory.powers-of-elements-monoids

Idea

The power operation on the nonnegative rational numbers is the operation n x ↦ xⁿ, which is defined by iteratively multiplying x with itself n times. This file covers the case where n is a natural number.

Definition

power-ℚ⁰⁺ :   ℚ⁰⁺  ℚ⁰⁺
power-ℚ⁰⁺ = power-Commutative-Monoid commutative-monoid-mul-ℚ⁰⁺

Properties

1ⁿ = 1

power-one-ℚ⁰⁺ : (n : )  power-ℚ⁰⁺ n one-ℚ⁰⁺  one-ℚ⁰⁺
power-one-ℚ⁰⁺ = power-unit-Commutative-Monoid commutative-monoid-mul-ℚ⁰⁺

qⁿ⁺¹ = qⁿq

power-succ-ℚ⁰⁺ :
  (n : ) (q : ℚ⁰⁺)  power-ℚ⁰⁺ (succ-ℕ n) q  power-ℚ⁰⁺ n q *ℚ⁰⁺ q
power-succ-ℚ⁰⁺ = power-succ-Commutative-Monoid commutative-monoid-mul-ℚ⁰⁺

qⁿ = qqⁿ

power-succ-ℚ⁰⁺' :
  (n : ) (q : ℚ⁰⁺)  power-ℚ⁰⁺ (succ-ℕ n) q  q *ℚ⁰⁺ power-ℚ⁰⁺ n q
power-succ-ℚ⁰⁺' = power-succ-Commutative-Monoid' commutative-monoid-mul-ℚ⁰⁺

qᵐ⁺ⁿ = qᵐqⁿ

abstract
  distributive-power-add-ℚ⁰⁺ :
    (m n : ) (q : ℚ⁰⁺) 
    power-ℚ⁰⁺ (m +ℕ n) q  power-ℚ⁰⁺ m q *ℚ⁰⁺ power-ℚ⁰⁺ n q
  distributive-power-add-ℚ⁰⁺ m n _ =
    distributive-power-add-Commutative-Monoid commutative-monoid-mul-ℚ⁰⁺ m n

(pq)ⁿ=pⁿqⁿ

abstract
  left-distributive-power-mul-ℚ⁰⁺ :
    (n : ) (p q : ℚ⁰⁺) 
    power-ℚ⁰⁺ n (p *ℚ⁰⁺ q)  power-ℚ⁰⁺ n p *ℚ⁰⁺ power-ℚ⁰⁺ n q
  left-distributive-power-mul-ℚ⁰⁺ n p q =
    distributive-power-mul-Commutative-Monoid commutative-monoid-mul-ℚ⁰⁺ n

pᵐⁿ = (pᵐ)ⁿ

power-mul-ℚ⁰⁺ :
  (m n : ) (q : ℚ⁰⁺)  power-ℚ⁰⁺ (m *ℕ n) q  power-ℚ⁰⁺ n (power-ℚ⁰⁺ m q)
power-mul-ℚ⁰⁺ m n q =
  power-mul-Commutative-Monoid commutative-monoid-mul-ℚ⁰⁺ m n

If p and q are nonnegative rational numbers with p < q and n is nonzero, then pⁿ < qⁿ

abstract
  preserves-le-power-ℚ⁰⁺ :
    (n : )  (p q : ℚ⁰⁺)  le-ℚ⁰⁺ p q  (is-nonzero-ℕ n) 
    le-ℚ⁰⁺ (power-ℚ⁰⁺ n p) (power-ℚ⁰⁺ n q)
  preserves-le-power-ℚ⁰⁺ 0 p q p<q H = ex-falso (H refl)
  preserves-le-power-ℚ⁰⁺ 1 p q p<q _ = p<q
  preserves-le-power-ℚ⁰⁺ (succ-ℕ n@(succ-ℕ _)) p q p<q _ =
    concatenate-leq-le-ℚ⁰⁺
      ( power-ℚ⁰⁺ (succ-ℕ n) p)
      ( power-ℚ⁰⁺ n p *ℚ⁰⁺ q)
      ( power-ℚ⁰⁺ (succ-ℕ n) q)
      ( preserves-leq-left-mul-ℚ⁰⁺ (power-ℚ⁰⁺ n p) _ _ (leq-le-ℚ p<q))
      ( preserves-le-right-mul-ℚ⁺
        ( rational-ℚ⁰⁺ q , is-positive-le-ℚ⁰⁺ p _ p<q)
        ( rational-ℚ⁰⁺ (power-ℚ⁰⁺ n p))
        ( rational-ℚ⁰⁺ (power-ℚ⁰⁺ n q))
        ( preserves-le-power-ℚ⁰⁺ n p q p<q (is-nonzero-succ-ℕ _)))

If p and q are nonnegative rational numbers with p ≤ q, then pⁿ ≤ qⁿ

abstract
  preserves-leq-power-ℚ⁰⁺ :
    (n : ) (p q : ℚ⁰⁺)  leq-ℚ⁰⁺ p q  leq-ℚ⁰⁺ (power-ℚ⁰⁺ n p) (power-ℚ⁰⁺ n q)
  preserves-leq-power-ℚ⁰⁺ 0 _ _ _ = refl-leq-ℚ one-ℚ
  preserves-leq-power-ℚ⁰⁺ 1 p q p≤q = p≤q
  preserves-leq-power-ℚ⁰⁺ (succ-ℕ n@(succ-ℕ _)) p q p≤q =
    transitive-leq-ℚ⁰⁺
      ( power-ℚ⁰⁺ (succ-ℕ n) p)
      ( power-ℚ⁰⁺ n p *ℚ⁰⁺ q)
      ( power-ℚ⁰⁺ (succ-ℕ n) q)
      ( preserves-leq-right-mul-ℚ⁰⁺ q _ _ (preserves-leq-power-ℚ⁰⁺ n p q p≤q))
      ( preserves-leq-left-mul-ℚ⁰⁺ (power-ℚ⁰⁺ n p) _ _ p≤q)

Recent changes