Open subsets of located metric spaces
Content created by Louis Wasserman.
Created on 2025-08-30.
Last modified on 2025-08-30.
module metric-spaces.open-subsets-located-metric-spaces where
Imports
open import elementary-number-theory.minimum-rational-numbers open import elementary-number-theory.positive-rational-numbers open import foundation.cartesian-products-subtypes open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.existential-quantification open import foundation.function-types open import foundation.intersections-subtypes open import foundation.propositional-truncations open import foundation.propositions open import foundation.raising-universe-levels open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.unions-subtypes open import foundation.universe-levels open import metric-spaces.cartesian-products-metric-spaces open import metric-spaces.discrete-metric-spaces open import metric-spaces.interior-subsets-metric-spaces open import metric-spaces.located-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.open-subsets-metric-spaces open import metric-spaces.subspaces-metric-spaces
Idea
A subset S
of a
located metric space X
is
open¶
if it is an open subset of the
corresponding metric space.
Definition
module _ {l1 l2 l3 : Level} (X : Located-Metric-Space l1 l2) (S : subset-Located-Metric-Space l3 X) where is-open-prop-subset-Located-Metric-Space : Prop (l1 ⊔ l2 ⊔ l3) is-open-prop-subset-Located-Metric-Space = is-open-prop-subset-Metric-Space ( metric-space-Located-Metric-Space X) ( S) is-open-subset-Located-Metric-Space : UU (l1 ⊔ l2 ⊔ l3) is-open-subset-Located-Metric-Space = type-Prop is-open-prop-subset-Located-Metric-Space open-subset-Located-Metric-Space : {l1 l2 : Level} (l3 : Level) (X : Located-Metric-Space l1 l2) → UU (l1 ⊔ l2 ⊔ lsuc l3) open-subset-Located-Metric-Space l3 X = open-subset-Metric-Space l3 (metric-space-Located-Metric-Space X) module _ {l1 l2 l3 : Level} (X : Located-Metric-Space l1 l2) (S : open-subset-Located-Metric-Space l3 X) where subset-open-subset-Located-Metric-Space : subset-Located-Metric-Space l3 X subset-open-subset-Located-Metric-Space = pr1 S is-open-subset-open-subset-Located-Metric-Space : is-open-subset-Located-Metric-Space ( X) ( subset-open-subset-Located-Metric-Space) is-open-subset-open-subset-Located-Metric-Space = pr2 S
External links
- Open set at Wikidata
Recent changes
- 2025-08-30. Louis Wasserman. Topology in metric spaces (#1474).