Images of group homomorphisms
Content created by Egbert Rijke, Fredrik Bakke and Gregor Perčič.
Created on 2023-08-21.
Last modified on 2023-11-24.
module group-theory.images-of-group-homomorphisms where
Imports
open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.images open import foundation.images-subtypes open import foundation.logical-equivalences open import foundation.propositional-truncations open import foundation.subtypes open import foundation.universal-property-image open import foundation.universe-levels open import group-theory.groups open import group-theory.homomorphisms-groups open import group-theory.pullbacks-subgroups open import group-theory.subgroups open import group-theory.subsets-groups open import order-theory.galois-connections-large-posets open import order-theory.order-preserving-maps-large-posets open import order-theory.order-preserving-maps-large-preorders
Idea
The image of a group homomorphism
f : G → H
consists of the image of the underlying map
of f
. This subset contains the unit element
and is closed under multiplication and inverses. It is therefore a
subgroup of the group
H
. Alternatively, it can be described as the least subgroup of H
that
contains all the values of f
.
More generally, the image of a subgroup S
under a group homomorphism
f : G → H
is the subgroup consisting of all the elements in the image of the
underlying subset of S
under the underlying map
of f
. Since the image of a subgroup satisfies the following adjoint relation
(im f S ⊆ T) ↔ (S ⊆ T ∘ f)
it follows that we obtain a Galois connection.
Definitions
The universal property of the image of a group homomorphism
module _ {l1 l2 l3 : Level} (G : Group l1) (H : Group l2) (f : hom-Group G H) (K : Subgroup l3 H) where is-image-hom-Group : UUω is-image-hom-Group = {l : Level} (L : Subgroup l H) → leq-Subgroup H K L ↔ ((g : type-Group G) → is-in-Subgroup H L (map-hom-Group G H f g))
The universal property of the image subgroup of a subgroup
module _ {l1 l2 l3 l4 : Level} (G : Group l1) (H : Group l2) (f : hom-Group G H) (S : Subgroup l3 G) (T : Subgroup l4 H) where is-image-subgroup-hom-Group : UUω is-image-subgroup-hom-Group = {l : Level} (U : Subgroup l H) → leq-Subgroup H T U ↔ leq-Subgroup G S (pullback-Subgroup G H f U)
The image subgroup under a group homomorphism
module _ {l1 l2 : Level} (G : Group l1) (H : Group l2) (f : hom-Group G H) where subset-image-hom-Group : subset-Group (l1 ⊔ l2) H subset-image-hom-Group = subtype-im (map-hom-Group G H f) is-image-subtype-subset-image-hom-Group : is-image-subtype (map-hom-Group G H f) subset-image-hom-Group is-image-subtype-subset-image-hom-Group = is-image-subtype-subtype-im (map-hom-Group G H f) abstract contains-unit-image-hom-Group : contains-unit-subset-Group H subset-image-hom-Group contains-unit-image-hom-Group = unit-trunc-Prop (unit-Group G , preserves-unit-hom-Group G H f) abstract is-closed-under-multiplication-image-hom-Group : is-closed-under-multiplication-subset-Group H subset-image-hom-Group is-closed-under-multiplication-image-hom-Group {x} {y} K L = apply-twice-universal-property-trunc-Prop K L ( subset-image-hom-Group (mul-Group H x y)) ( λ where ( g , refl) (h , refl) → unit-trunc-Prop ( mul-Group G g h , preserves-mul-hom-Group G H f)) abstract is-closed-under-inverses-image-hom-Group : is-closed-under-inverses-subset-Group H subset-image-hom-Group is-closed-under-inverses-image-hom-Group {x} K = apply-universal-property-trunc-Prop K ( subset-image-hom-Group (inv-Group H x)) ( λ where ( g , refl) → unit-trunc-Prop ( inv-Group G g , preserves-inv-hom-Group G H f)) is-subgroup-image-hom-Group : is-subgroup-subset-Group H subset-image-hom-Group pr1 is-subgroup-image-hom-Group = contains-unit-image-hom-Group pr1 (pr2 is-subgroup-image-hom-Group) = is-closed-under-multiplication-image-hom-Group pr2 (pr2 is-subgroup-image-hom-Group) = is-closed-under-inverses-image-hom-Group image-hom-Group : Subgroup (l1 ⊔ l2) H pr1 image-hom-Group = subset-image-hom-Group pr2 image-hom-Group = is-subgroup-image-hom-Group is-image-image-hom-Group : is-image-hom-Group G H f image-hom-Group is-image-image-hom-Group K = is-image-subtype-subset-image-hom-Group (subset-Subgroup H K) contains-values-image-hom-Group : (g : type-Group G) → is-in-Subgroup H image-hom-Group (map-hom-Group G H f g) contains-values-image-hom-Group = forward-implication ( is-image-image-hom-Group image-hom-Group) ( refl-leq-Subgroup H image-hom-Group) leq-image-hom-Group : {l : Level} (K : Subgroup l H) → ((g : type-Group G) → is-in-Subgroup H K (map-hom-Group G H f g)) → leq-Subgroup H image-hom-Group K leq-image-hom-Group K = backward-implication (is-image-image-hom-Group K)
The image of a subgroup under a group homomorphism
module _ {l1 l2 l3 : Level} (G : Group l1) (H : Group l2) (f : hom-Group G H) (K : Subgroup l3 G) where subset-im-hom-Subgroup : subset-Group (l1 ⊔ l2 ⊔ l3) H subset-im-hom-Subgroup = im-subtype (map-hom-Group G H f) (subset-Subgroup G K) is-in-im-hom-Subgroup : type-Group H → UU (l1 ⊔ l2 ⊔ l3) is-in-im-hom-Subgroup = is-in-subtype subset-im-hom-Subgroup contains-unit-im-hom-Subgroup : contains-unit-subset-Group H subset-im-hom-Subgroup contains-unit-im-hom-Subgroup = unit-trunc-Prop (unit-Subgroup G K , preserves-unit-hom-Group G H f) abstract is-closed-under-multiplication-im-hom-Subgroup : is-closed-under-multiplication-subset-Group H subset-im-hom-Subgroup is-closed-under-multiplication-im-hom-Subgroup {x} {y} u v = apply-twice-universal-property-trunc-Prop u v ( subset-im-hom-Subgroup (mul-Group H x y)) ( λ where ((x' , k) , refl) ((y' , l) , refl) → unit-trunc-Prop ( ( mul-Subgroup G K (x' , k) (y' , l)) , ( preserves-mul-hom-Group G H f))) abstract is-closed-under-inverses-im-hom-Subgroup : is-closed-under-inverses-subset-Group H subset-im-hom-Subgroup is-closed-under-inverses-im-hom-Subgroup {x} u = apply-universal-property-trunc-Prop u ( subset-im-hom-Subgroup (inv-Group H x)) ( λ where ((x' , k) , refl) → unit-trunc-Prop ( ( inv-Subgroup G K (x' , k)) , ( preserves-inv-hom-Group G H f))) im-hom-Subgroup : Subgroup (l1 ⊔ l2 ⊔ l3) H pr1 im-hom-Subgroup = subset-im-hom-Subgroup pr1 (pr2 im-hom-Subgroup) = contains-unit-im-hom-Subgroup pr1 (pr2 (pr2 im-hom-Subgroup)) = is-closed-under-multiplication-im-hom-Subgroup pr2 (pr2 (pr2 im-hom-Subgroup)) = is-closed-under-inverses-im-hom-Subgroup forward-implication-is-image-subgroup-im-hom-Subgroup : {l : Level} (U : Subgroup l H) → leq-Subgroup H im-hom-Subgroup U → leq-Subgroup G K (pullback-Subgroup G H f U) forward-implication-is-image-subgroup-im-hom-Subgroup U = forward-implication-adjoint-relation-image-pullback-subtype ( map-hom-Group G H f) ( subset-Subgroup G K) ( subset-Subgroup H U) backward-implication-is-image-subgroup-im-hom-Subgroup : {l : Level} (U : Subgroup l H) → leq-Subgroup G K (pullback-Subgroup G H f U) → leq-Subgroup H im-hom-Subgroup U backward-implication-is-image-subgroup-im-hom-Subgroup U = backward-implication-adjoint-relation-image-pullback-subtype ( map-hom-Group G H f) ( subset-Subgroup G K) ( subset-Subgroup H U) is-image-subgroup-im-hom-Subgroup : is-image-subgroup-hom-Group G H f K im-hom-Subgroup is-image-subgroup-im-hom-Subgroup U = adjoint-relation-image-pullback-subtype ( map-hom-Group G H f) ( subset-Subgroup G K) ( subset-Subgroup H U)
The image-pullback Galois connection on subgroups
module _ {l1 l2 : Level} (G : Group l1) (H : Group l2) (f : hom-Group G H) where preserves-order-im-hom-Subgroup : {l3 l4 : Level} (K : Subgroup l3 G) (L : Subgroup l4 G) → leq-Subgroup G K L → leq-Subgroup H (im-hom-Subgroup G H f K) (im-hom-Subgroup G H f L) preserves-order-im-hom-Subgroup K L = preserves-order-im-subtype ( map-hom-Group G H f) ( subset-Subgroup G K) ( subset-Subgroup G L) im-subgroup-hom-large-poset-hom-Group : hom-Large-Poset ( λ l → l1 ⊔ l2 ⊔ l) ( Subgroup-Large-Poset G) ( Subgroup-Large-Poset H) map-hom-Large-Preorder im-subgroup-hom-large-poset-hom-Group = im-hom-Subgroup G H f preserves-order-hom-Large-Preorder im-subgroup-hom-large-poset-hom-Group = preserves-order-im-hom-Subgroup image-pullback-galois-connection-Subgroup : galois-connection-Large-Poset ( λ l → l1 ⊔ l2 ⊔ l) ( λ l → l) ( Subgroup-Large-Poset G) ( Subgroup-Large-Poset H) lower-adjoint-galois-connection-Large-Poset image-pullback-galois-connection-Subgroup = im-subgroup-hom-large-poset-hom-Group upper-adjoint-galois-connection-Large-Poset image-pullback-galois-connection-Subgroup = pullback-subgroup-hom-large-poset-hom-Group G H f adjoint-relation-galois-connection-Large-Poset image-pullback-galois-connection-Subgroup K = is-image-subgroup-im-hom-Subgroup G H f K
Properties
Any subgroup U
of H
has the same elements as im f K
if and only if U
satisfies the universal property of the image of K
under f
module _ {l1 l2 l3 l4 : Level} (G : Group l1) (H : Group l2) (f : hom-Group G H) (K : Subgroup l3 G) (U : Subgroup l4 H) where is-image-subgroup-has-same-elements-Subgroup : has-same-elements-Subgroup H (im-hom-Subgroup G H f K) U → is-image-subgroup-hom-Group G H f K U is-image-subgroup-has-same-elements-Subgroup s = is-lower-element-sim-galois-connection-Large-Poset ( Subgroup-Large-Poset G) ( Subgroup-Large-Poset H) ( image-pullback-galois-connection-Subgroup G H f) ( K) ( U) ( similar-has-same-elements-Subgroup H (im-hom-Subgroup G H f K) U s) has-same-elements-is-image-Subgroup : is-image-subgroup-hom-Group G H f K U → has-same-elements-Subgroup H (im-hom-Subgroup G H f K) U has-same-elements-is-image-Subgroup i = has-same-elements-similar-Subgroup H ( im-hom-Subgroup G H f K) ( U) ( sim-is-lower-element-galois-connection-Large-Poset ( Subgroup-Large-Poset G) ( Subgroup-Large-Poset H) ( image-pullback-galois-connection-Subgroup G H f) ( K) ( U) ( i))
Recent changes
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-10-19. Egbert Rijke. Characteristic subgroups (#863).
- 2023-10-09. Fredrik Bakke and Egbert Rijke. Refactor library to use
λ where
(#809). - 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-09-21. Egbert Rijke and Gregor Perčič. The classification of cyclic rings (#757).