Cartesian products of metric spaces
Content created by Louis Wasserman.
Created on 2025-08-30.
Last modified on 2025-08-30.
module metric-spaces.cartesian-products-metric-spaces where
Imports
open import foundation.cartesian-product-types open import foundation.conjunction open import foundation.dependent-pair-types open import foundation.equality-cartesian-product-types open import foundation.evaluation-functions open import foundation.function-extensionality open import foundation.function-types open import foundation.functoriality-cartesian-product-types open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import metric-spaces.cauchy-approximations-metric-spaces open import metric-spaces.complete-metric-spaces open import metric-spaces.convergent-cauchy-approximations-metric-spaces open import metric-spaces.extensionality-pseudometric-spaces open import metric-spaces.limits-of-cauchy-approximations-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.monotonic-rational-neighborhood-relations open import metric-spaces.pseudometric-spaces open import metric-spaces.rational-neighborhood-relations open import metric-spaces.reflexive-rational-neighborhood-relations open import metric-spaces.saturated-rational-neighborhood-relations open import metric-spaces.short-functions-metric-spaces open import metric-spaces.symmetric-rational-neighborhood-relations open import metric-spaces.triangular-rational-neighborhood-relations
Idea
For any two metric spaces X
, Y
, there is a
cartesian product metric space¶ X × Y
.
Pairs (x₁ , y₁)
and (x₂ , y₂)
are in a
d
-neighborhood in the
product structure if x₁
and x₂
are in a d
-neighborhood and y₁
and y₂
are in a d
-neighborhood.
This metric is not canonical, but is consistent with the dependent product of metric spaces.
Definition
module _ {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) where type-product-Metric-Space : UU (l1 ⊔ l3) type-product-Metric-Space = type-Metric-Space X × type-Metric-Space Y neighborhood-prop-product-Metric-Space : Rational-Neighborhood-Relation (l2 ⊔ l4) type-product-Metric-Space neighborhood-prop-product-Metric-Space ε (x₁ , y₁) (x₂ , y₂) = neighborhood-prop-Metric-Space X ε x₁ x₂ ∧ neighborhood-prop-Metric-Space Y ε y₁ y₂ refl-neighborhood-product-Metric-Space : is-reflexive-Rational-Neighborhood-Relation neighborhood-prop-product-Metric-Space refl-neighborhood-product-Metric-Space ε (x , y) = refl-neighborhood-Metric-Space X ε x , refl-neighborhood-Metric-Space Y ε y symmetric-neighborhood-product-Metric-Space : is-symmetric-Rational-Neighborhood-Relation neighborhood-prop-product-Metric-Space symmetric-neighborhood-product-Metric-Space ε (x₁ , y₁) (x₂ , y₂) = map-product ( symmetric-neighborhood-Metric-Space X ε x₁ x₂) ( symmetric-neighborhood-Metric-Space Y ε y₁ y₂) triangular-neighborhood-product-Metric-Space : is-triangular-Rational-Neighborhood-Relation neighborhood-prop-product-Metric-Space triangular-neighborhood-product-Metric-Space (x₁ , y₁) (x₂ , y₂) (x₃ , y₃) d12 d23 (Ndx23 , Ndy23) (Ndx12 , Ndy12) = triangular-neighborhood-Metric-Space X x₁ x₂ x₃ d12 d23 Ndx23 Ndx12 , triangular-neighborhood-Metric-Space Y y₁ y₂ y₃ d12 d23 Ndy23 Ndy12 saturated-neighborhood-product-Metric-Space : is-saturated-Rational-Neighborhood-Relation neighborhood-prop-product-Metric-Space saturated-neighborhood-product-Metric-Space ε (x₁ , y₁) (x₂ , y₂) H = saturated-neighborhood-Metric-Space X ε x₁ x₂ (pr1 ∘ H) , saturated-neighborhood-Metric-Space Y ε y₁ y₂ (pr2 ∘ H) pseudometric-space-product-Metric-Space : Pseudometric-Space (l1 ⊔ l3) (l2 ⊔ l4) pseudometric-space-product-Metric-Space = type-product-Metric-Space , neighborhood-prop-product-Metric-Space , refl-neighborhood-product-Metric-Space , symmetric-neighborhood-product-Metric-Space , triangular-neighborhood-product-Metric-Space , saturated-neighborhood-product-Metric-Space is-extensional-pseudometric-space-product-Metric-Space : is-extensional-Pseudometric-Space pseudometric-space-product-Metric-Space is-extensional-pseudometric-space-product-Metric-Space = is-extensional-is-tight-Pseudometric-Space ( pseudometric-space-product-Metric-Space) ( λ (x₁ , y₁) (x₂ , y₂) H → eq-pair ( eq-sim-Metric-Space X x₁ x₂ (pr1 ∘ H)) ( eq-sim-Metric-Space Y y₁ y₂ (pr2 ∘ H))) product-Metric-Space : Metric-Space (l1 ⊔ l3) (l2 ⊔ l4) product-Metric-Space = make-Metric-Space type-product-Metric-Space neighborhood-prop-product-Metric-Space refl-neighborhood-product-Metric-Space symmetric-neighborhood-product-Metric-Space triangular-neighborhood-product-Metric-Space saturated-neighborhood-product-Metric-Space is-extensional-pseudometric-space-product-Metric-Space
Properties
The projection maps are short
is-short-pr1-product-Metric-Space : is-short-function-Metric-Space ( product-Metric-Space) ( X) ( pr1) is-short-pr1-product-Metric-Space _ _ _ = pr1 is-short-pr2-product-Metric-Space : is-short-function-Metric-Space ( product-Metric-Space) ( Y) ( pr2) is-short-pr2-product-Metric-Space _ _ _ = pr2
Recent changes
- 2025-08-30. Louis Wasserman. Topology in metric spaces (#1474).