Negation of linear maps between left modules over rings

Content created by Louis Wasserman.

Created on 2026-01-30.
Last modified on 2026-01-30.

module linear-algebra.negation-linear-maps-left-modules-rings where
Imports
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.involutions
open import foundation.universe-levels

open import linear-algebra.left-modules-rings
open import linear-algebra.linear-maps-left-modules-rings

open import ring-theory.rings

Idea

Given a linear map f from a left module M over a ring R to another left module N over R, the map x ↦ -(f x) is a linear map.

Definition

module _
  {l1 l2 l3 : Level}
  (R : Ring l1)
  (M : left-module-Ring l2 R)
  (N : left-module-Ring l3 R)
  (f : linear-map-left-module-Ring R M N)
  where

  neg-map-linear-map-left-module-Ring :
    type-left-module-Ring R M  type-left-module-Ring R N
  neg-map-linear-map-left-module-Ring x =
    neg-left-module-Ring R N (map-linear-map-left-module-Ring R M N f x)

  abstract
    is-additive-neg-map-linear-map-left-module-Ring :
      is-additive-map-left-module-Ring R M N neg-map-linear-map-left-module-Ring
    is-additive-neg-map-linear-map-left-module-Ring x y =
      ( ap
        ( neg-left-module-Ring R N)
        ( is-additive-map-linear-map-left-module-Ring R M N f x y)) 
      ( distributive-neg-add-left-module-Ring R N _ _)

    is-homogeneous-neg-map-linear-map-left-module-Ring :
      is-homogeneous-map-left-module-Ring R M N
        ( neg-map-linear-map-left-module-Ring)
    is-homogeneous-neg-map-linear-map-left-module-Ring c x =
      ( ap
        ( neg-left-module-Ring R N)
        ( is-homogeneous-map-linear-map-left-module-Ring R M N f c x)) 
      ( inv (right-negative-law-mul-left-module-Ring R N c _))

  is-linear-neg-map-linear-map-left-module-Ring :
    is-linear-map-left-module-Ring R M N neg-map-linear-map-left-module-Ring
  is-linear-neg-map-linear-map-left-module-Ring =
    ( is-additive-neg-map-linear-map-left-module-Ring ,
      is-homogeneous-neg-map-linear-map-left-module-Ring)

  neg-linear-map-left-module-Ring : linear-map-left-module-Ring R M N
  neg-linear-map-left-module-Ring =
    ( neg-map-linear-map-left-module-Ring ,
      is-linear-neg-map-linear-map-left-module-Ring)

Properties

Negation of a linear map is an involution

module _
  {l1 l2 l3 : Level}
  (R : Ring l1)
  (M : left-module-Ring l2 R)
  (N : left-module-Ring l3 R)
  (f : linear-map-left-module-Ring R M N)
  where

  abstract
    neg-neg-linear-map-left-module-Ring :
      neg-linear-map-left-module-Ring R M N
        ( neg-linear-map-left-module-Ring R M N f) 
      f
    neg-neg-linear-map-left-module-Ring =
      eq-htpy-linear-map-left-module-Ring R M N _ _
        ( λ x  neg-neg-left-module-Ring R N _)

Recent changes