Negation of linear maps between left modules over rings
Content created by Louis Wasserman.
Created on 2026-01-30.
Last modified on 2026-01-30.
module linear-algebra.negation-linear-maps-left-modules-rings where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.involutions open import foundation.universe-levels open import linear-algebra.left-modules-rings open import linear-algebra.linear-maps-left-modules-rings open import ring-theory.rings
Idea
Given a linear map f from
a left module M over a
ring R to another left module N over R, the map
x ↦ -(f x) is a linear map.
Definition
module _ {l1 l2 l3 : Level} (R : Ring l1) (M : left-module-Ring l2 R) (N : left-module-Ring l3 R) (f : linear-map-left-module-Ring R M N) where neg-map-linear-map-left-module-Ring : type-left-module-Ring R M → type-left-module-Ring R N neg-map-linear-map-left-module-Ring x = neg-left-module-Ring R N (map-linear-map-left-module-Ring R M N f x) abstract is-additive-neg-map-linear-map-left-module-Ring : is-additive-map-left-module-Ring R M N neg-map-linear-map-left-module-Ring is-additive-neg-map-linear-map-left-module-Ring x y = ( ap ( neg-left-module-Ring R N) ( is-additive-map-linear-map-left-module-Ring R M N f x y)) ∙ ( distributive-neg-add-left-module-Ring R N _ _) is-homogeneous-neg-map-linear-map-left-module-Ring : is-homogeneous-map-left-module-Ring R M N ( neg-map-linear-map-left-module-Ring) is-homogeneous-neg-map-linear-map-left-module-Ring c x = ( ap ( neg-left-module-Ring R N) ( is-homogeneous-map-linear-map-left-module-Ring R M N f c x)) ∙ ( inv (right-negative-law-mul-left-module-Ring R N c _)) is-linear-neg-map-linear-map-left-module-Ring : is-linear-map-left-module-Ring R M N neg-map-linear-map-left-module-Ring is-linear-neg-map-linear-map-left-module-Ring = ( is-additive-neg-map-linear-map-left-module-Ring , is-homogeneous-neg-map-linear-map-left-module-Ring) neg-linear-map-left-module-Ring : linear-map-left-module-Ring R M N neg-linear-map-left-module-Ring = ( neg-map-linear-map-left-module-Ring , is-linear-neg-map-linear-map-left-module-Ring)
Properties
Negation of a linear map is an involution
module _ {l1 l2 l3 : Level} (R : Ring l1) (M : left-module-Ring l2 R) (N : left-module-Ring l3 R) (f : linear-map-left-module-Ring R M N) where abstract neg-neg-linear-map-left-module-Ring : neg-linear-map-left-module-Ring R M N ( neg-linear-map-left-module-Ring R M N f) = f neg-neg-linear-map-left-module-Ring = eq-htpy-linear-map-left-module-Ring R M N _ _ ( λ x → neg-neg-left-module-Ring R N _)
Recent changes
- 2026-01-30. Louis Wasserman. Linear algebra concepts (#1764).