Multiplication by negative rational numbers
Content created by Louis Wasserman.
Created on 2025-10-15.
Last modified on 2025-10-17.
{-# OPTIONS --lossy-unification #-} module elementary-number-theory.multiplication-negative-rational-numbers where
Imports
open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.multiplication-positive-rational-numbers open import elementary-number-theory.multiplication-rational-numbers open import elementary-number-theory.multiplicative-group-of-positive-rational-numbers open import elementary-number-theory.negative-rational-numbers open import elementary-number-theory.positive-and-negative-rational-numbers open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.rational-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.action-on-identifications-functions open import foundation.binary-transport open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.transport-along-identifications
Idea
The product of two negative rational numbers is their product as rational numbers, and is positive.
Properties
The product of two negative rational numbers is positive
opaque unfolding is-negative-ℚ is-positive-mul-negative-ℚ : {x y : ℚ} → is-negative-ℚ x → is-negative-ℚ y → is-positive-ℚ (x *ℚ y) is-positive-mul-negative-ℚ {x} {y} P Q = tr ( is-positive-ℚ) ( negative-law-mul-ℚ x y) ( is-positive-mul-ℚ P Q) mul-ℚ⁻ : ℚ⁻ → ℚ⁻ → ℚ⁺ mul-ℚ⁻ (p , is-neg-p) (q , is-neg-q) = (p *ℚ q , is-positive-mul-negative-ℚ is-neg-p is-neg-q) infixl 40 _*ℚ⁻_ _*ℚ⁻_ : ℚ⁻ → ℚ⁻ → ℚ⁺ _*ℚ⁻_ = mul-ℚ⁻
Multiplication by a negative rational number reverses inequality
module _ (p : ℚ⁻) (q r : ℚ) (H : leq-ℚ q r) where abstract reverses-leq-right-mul-ℚ⁻ : leq-ℚ (r *ℚ rational-ℚ⁻ p) (q *ℚ rational-ℚ⁻ p) reverses-leq-right-mul-ℚ⁻ = binary-tr ( leq-ℚ) ( negative-law-mul-ℚ r (rational-ℚ⁻ p)) ( negative-law-mul-ℚ q (rational-ℚ⁻ p)) ( preserves-leq-right-mul-ℚ⁺ ( neg-ℚ⁻ p) ( neg-ℚ r) ( neg-ℚ q) ( neg-leq-ℚ H))
Multiplication by a negative rational number reverses strict inequality
module _ (p : ℚ⁻) (q r : ℚ) (H : le-ℚ q r) where abstract reverses-le-right-mul-ℚ⁻ : le-ℚ (r *ℚ rational-ℚ⁻ p) (q *ℚ rational-ℚ⁻ p) reverses-le-right-mul-ℚ⁻ = binary-tr ( le-ℚ) ( negative-law-mul-ℚ r (rational-ℚ⁻ p)) ( negative-law-mul-ℚ q (rational-ℚ⁻ p)) ( preserves-le-right-mul-ℚ⁺ ( neg-ℚ⁻ p) ( neg-ℚ r) ( neg-ℚ q) ( neg-le-ℚ H)) reverses-le-left-mul-ℚ⁻ : le-ℚ (rational-ℚ⁻ p *ℚ r) (rational-ℚ⁻ p *ℚ q) reverses-le-left-mul-ℚ⁻ = binary-tr ( le-ℚ) ( commutative-mul-ℚ _ _) ( commutative-mul-ℚ _ _) ( reverses-le-right-mul-ℚ⁻)
The negative rational numbers are invertible elements of the multiplicative monoid of rational numbers
opaque inv-ℚ⁻ : ℚ⁻ → ℚ⁻ inv-ℚ⁻ q = neg-ℚ⁺ (inv-ℚ⁺ (neg-ℚ⁻ q)) left-inverse-law-mul-ℚ⁻ : (q : ℚ⁻) → rational-ℚ⁻ (inv-ℚ⁻ q) *ℚ rational-ℚ⁻ q = one-ℚ left-inverse-law-mul-ℚ⁻ q = inv (swap-neg-mul-ℚ _ _) ∙ ap rational-ℚ⁺ (left-inverse-law-mul-ℚ⁺ (neg-ℚ⁻ q)) right-inverse-law-mul-ℚ⁻ : (q : ℚ⁻) → rational-ℚ⁻ q *ℚ rational-ℚ⁻ (inv-ℚ⁻ q) = one-ℚ right-inverse-law-mul-ℚ⁻ q = swap-neg-mul-ℚ _ _ ∙ ap rational-ℚ⁺ (right-inverse-law-mul-ℚ⁺ (neg-ℚ⁻ q))
Inversion reverses inequality on negative rational numbers
opaque unfolding inv-ℚ⁻ reverses-leq-inv-ℚ⁻ : (p q : ℚ⁻) → leq-ℚ⁻ p q → leq-ℚ⁻ (inv-ℚ⁻ q) (inv-ℚ⁻ p) reverses-leq-inv-ℚ⁻ p q p≤q = neg-leq-ℚ ( inv-leq-ℚ⁺ ( neg-ℚ⁻ q) ( neg-ℚ⁻ p) ( neg-leq-ℚ p≤q))
Inversion reverses strict inequality on negative rational numbers
opaque unfolding inv-ℚ⁻ reverses-le-inv-ℚ⁻ : (p q : ℚ⁻) → le-ℚ⁻ p q → le-ℚ⁻ (inv-ℚ⁻ q) (inv-ℚ⁻ p) reverses-le-inv-ℚ⁻ p q p<q = neg-le-ℚ ( inv-le-ℚ⁺ ( neg-ℚ⁻ q) ( neg-ℚ⁻ p) ( neg-le-ℚ p<q))
Recent changes
- 2025-10-17. Louis Wasserman. Reorganize signed arithmetic on rational numbers (#1582).
- 2025-10-15. Louis Wasserman. Inequalities from multiplication of signed real numbers (#1584).