Multiplication of negative rational numbers
Content created by Louis Wasserman.
Created on 2025-10-15.
Last modified on 2025-10-15.
{-# OPTIONS --lossy-unification #-} module elementary-number-theory.multiplication-negative-rational-numbers where
Imports
open import elementary-number-theory.multiplication-positive-rational-numbers open import elementary-number-theory.multiplication-rational-numbers open import elementary-number-theory.negative-integer-fractions open import elementary-number-theory.negative-rational-numbers open import elementary-number-theory.positive-and-negative-rational-numbers open import elementary-number-theory.positive-integer-fractions open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.rational-numbers open import foundation.dependent-pair-types
Idea
The product of two negative rational numbers is their product as rational numbers, and is positive.
Definition
opaque unfolding mul-ℚ rational-fraction-ℤ is-positive-mul-negative-ℚ : {x y : ℚ} → is-negative-ℚ x → is-negative-ℚ y → is-positive-ℚ (x *ℚ y) is-positive-mul-negative-ℚ {x} {y} P Q = is-positive-reduce-fraction-ℤ ( is-positive-mul-negative-fraction-ℤ { fraction-ℚ x} { fraction-ℚ y} ( is-negative-fraction-ℚ⁻ (x , P)) ( is-negative-fraction-ℚ⁻ (y , Q))) mul-ℚ⁻ : ℚ⁻ → ℚ⁻ → ℚ⁺ mul-ℚ⁻ (p , is-neg-p) (q , is-neg-q) = (p *ℚ q , is-positive-mul-negative-ℚ is-neg-p is-neg-q) infixl 40 _*ℚ⁻_ _*ℚ⁻_ : ℚ⁻ → ℚ⁻ → ℚ⁺ _*ℚ⁻_ = mul-ℚ⁻
Recent changes
- 2025-10-15. Louis Wasserman. Inequalities from multiplication of signed real numbers (#1584).