Multiplication by negative rational numbers

Content created by Louis Wasserman.

Created on 2025-10-15.
Last modified on 2025-10-17.

{-# OPTIONS --lossy-unification #-}

module elementary-number-theory.multiplication-negative-rational-numbers where
Imports
open import elementary-number-theory.inequality-rational-numbers
open import elementary-number-theory.multiplication-positive-rational-numbers
open import elementary-number-theory.multiplication-rational-numbers
open import elementary-number-theory.multiplicative-group-of-positive-rational-numbers
open import elementary-number-theory.negative-rational-numbers
open import elementary-number-theory.positive-and-negative-rational-numbers
open import elementary-number-theory.positive-rational-numbers
open import elementary-number-theory.rational-numbers
open import elementary-number-theory.strict-inequality-rational-numbers

open import foundation.action-on-identifications-functions
open import foundation.binary-transport
open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.transport-along-identifications

Idea

The product of two negative rational numbers is their product as rational numbers, and is positive.

Properties

The product of two negative rational numbers is positive

opaque
  unfolding is-negative-ℚ

  is-positive-mul-negative-ℚ :
    {x y : }  is-negative-ℚ x  is-negative-ℚ y  is-positive-ℚ (x *ℚ y)
  is-positive-mul-negative-ℚ {x} {y} P Q =
    tr
      ( is-positive-ℚ)
      ( negative-law-mul-ℚ x y)
      ( is-positive-mul-ℚ P Q)

mul-ℚ⁻ : ℚ⁻  ℚ⁻  ℚ⁺
mul-ℚ⁻ (p , is-neg-p) (q , is-neg-q) =
  (p *ℚ q , is-positive-mul-negative-ℚ is-neg-p is-neg-q)

infixl 40 _*ℚ⁻_
_*ℚ⁻_ : ℚ⁻  ℚ⁻  ℚ⁺
_*ℚ⁻_ = mul-ℚ⁻

Multiplication by a negative rational number reverses inequality

module _
  (p : ℚ⁻)
  (q r : )
  (H : leq-ℚ q r)
  where

  abstract
    reverses-leq-right-mul-ℚ⁻ : leq-ℚ (r *ℚ rational-ℚ⁻ p) (q *ℚ rational-ℚ⁻ p)
    reverses-leq-right-mul-ℚ⁻ =
      binary-tr
        ( leq-ℚ)
        ( negative-law-mul-ℚ r (rational-ℚ⁻ p))
        ( negative-law-mul-ℚ q (rational-ℚ⁻ p))
        ( preserves-leq-right-mul-ℚ⁺
          ( neg-ℚ⁻ p)
          ( neg-ℚ r)
          ( neg-ℚ q)
          ( neg-leq-ℚ H))

Multiplication by a negative rational number reverses strict inequality

module _
  (p : ℚ⁻)
  (q r : )
  (H : le-ℚ q r)
  where

  abstract
    reverses-le-right-mul-ℚ⁻ : le-ℚ (r *ℚ rational-ℚ⁻ p) (q *ℚ rational-ℚ⁻ p)
    reverses-le-right-mul-ℚ⁻ =
      binary-tr
        ( le-ℚ)
        ( negative-law-mul-ℚ r (rational-ℚ⁻ p))
        ( negative-law-mul-ℚ q (rational-ℚ⁻ p))
        ( preserves-le-right-mul-ℚ⁺
          ( neg-ℚ⁻ p)
          ( neg-ℚ r)
          ( neg-ℚ q)
          ( neg-le-ℚ H))

    reverses-le-left-mul-ℚ⁻ : le-ℚ (rational-ℚ⁻ p *ℚ r) (rational-ℚ⁻ p *ℚ q)
    reverses-le-left-mul-ℚ⁻ =
      binary-tr
        ( le-ℚ)
        ( commutative-mul-ℚ _ _)
        ( commutative-mul-ℚ _ _)
        ( reverses-le-right-mul-ℚ⁻)

The negative rational numbers are invertible elements of the multiplicative monoid of rational numbers

opaque
  inv-ℚ⁻ : ℚ⁻  ℚ⁻
  inv-ℚ⁻ q = neg-ℚ⁺ (inv-ℚ⁺ (neg-ℚ⁻ q))

  left-inverse-law-mul-ℚ⁻ :
    (q : ℚ⁻)  rational-ℚ⁻ (inv-ℚ⁻ q) *ℚ rational-ℚ⁻ q  one-ℚ
  left-inverse-law-mul-ℚ⁻ q =
    inv (swap-neg-mul-ℚ _ _) 
    ap rational-ℚ⁺ (left-inverse-law-mul-ℚ⁺ (neg-ℚ⁻ q))

  right-inverse-law-mul-ℚ⁻ :
    (q : ℚ⁻)  rational-ℚ⁻ q *ℚ rational-ℚ⁻ (inv-ℚ⁻ q)  one-ℚ
  right-inverse-law-mul-ℚ⁻ q =
    swap-neg-mul-ℚ _ _ 
    ap rational-ℚ⁺ (right-inverse-law-mul-ℚ⁺ (neg-ℚ⁻ q))

Inversion reverses inequality on negative rational numbers

opaque
  unfolding inv-ℚ⁻

  reverses-leq-inv-ℚ⁻ :
    (p q : ℚ⁻)  leq-ℚ⁻ p q  leq-ℚ⁻ (inv-ℚ⁻ q) (inv-ℚ⁻ p)
  reverses-leq-inv-ℚ⁻ p q p≤q =
    neg-leq-ℚ
      ( inv-leq-ℚ⁺
        ( neg-ℚ⁻ q)
        ( neg-ℚ⁻ p)
        ( neg-leq-ℚ p≤q))

Inversion reverses strict inequality on negative rational numbers

opaque
  unfolding inv-ℚ⁻

  reverses-le-inv-ℚ⁻ :
    (p q : ℚ⁻)  le-ℚ⁻ p q  le-ℚ⁻ (inv-ℚ⁻ q) (inv-ℚ⁻ p)
  reverses-le-inv-ℚ⁻ p q p<q =
    neg-le-ℚ
      ( inv-le-ℚ⁺
        ( neg-ℚ⁻ q)
        ( neg-ℚ⁻ p)
        ( neg-le-ℚ p<q))

Recent changes