Real inner product spaces are normed
Content created by Louis Wasserman.
Created on 2025-12-03.
Last modified on 2025-12-03.
{-# OPTIONS --lossy-unification #-} module linear-algebra.real-inner-product-spaces-are-normed where
Imports
open import elementary-number-theory.nonzero-natural-numbers open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.logical-equivalences open import foundation.transport-along-identifications open import foundation.universe-levels open import linear-algebra.cauchy-schwarz-inequality-real-inner-product-spaces open import linear-algebra.normed-real-vector-spaces open import linear-algebra.real-inner-product-spaces open import linear-algebra.seminormed-real-vector-spaces open import metric-spaces.equality-of-metric-spaces open import metric-spaces.metric-spaces open import order-theory.large-posets open import real-numbers.absolute-value-real-numbers open import real-numbers.addition-nonnegative-real-numbers open import real-numbers.addition-real-numbers open import real-numbers.inequalities-addition-and-subtraction-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.metric-space-of-real-numbers open import real-numbers.multiplication-positive-real-numbers open import real-numbers.multiplication-real-numbers open import real-numbers.positive-real-numbers open import real-numbers.raising-universe-levels-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.similarity-real-numbers open import real-numbers.square-roots-nonnegative-real-numbers open import real-numbers.squares-real-numbers
Idea
Given a real inner product space
V, defining the norm of v as the
square root of the
inner product of v with itself satisfies the conditions of a
normed real vector space.
Definition
module _ {l1 l2 : Level} (V : ℝ-Inner-Product-Space l1 l2) where abstract is-triangular-squared-norm-ℝ-Inner-Product-Space : (u v : type-ℝ-Inner-Product-Space V) → leq-ℝ ( squared-norm-ℝ-Inner-Product-Space V ( add-ℝ-Inner-Product-Space V u v)) ( square-ℝ ( ( norm-ℝ-Inner-Product-Space V u) +ℝ ( norm-ℝ-Inner-Product-Space V v))) is-triangular-squared-norm-ℝ-Inner-Product-Space u v = let open inequality-reasoning-Large-Poset ℝ-Large-Poset in chain-of-inequalities squared-norm-ℝ-Inner-Product-Space V (add-ℝ-Inner-Product-Space V u v) ≤ ( squared-norm-ℝ-Inner-Product-Space V u) +ℝ ( real-ℕ 2 *ℝ inner-product-ℝ-Inner-Product-Space V u v) +ℝ ( squared-norm-ℝ-Inner-Product-Space V v) by leq-eq-ℝ (squared-norm-add-ℝ-Inner-Product-Space V u v) ≤ ( squared-norm-ℝ-Inner-Product-Space V u) +ℝ ( ( real-ℕ 2) *ℝ ( ( norm-ℝ-Inner-Product-Space V u) *ℝ norm-ℝ-Inner-Product-Space V v)) +ℝ ( squared-norm-ℝ-Inner-Product-Space V v) by preserves-leq-right-add-ℝ _ _ _ ( preserves-leq-left-add-ℝ _ _ _ ( preserves-leq-left-mul-ℝ⁺ ( positive-real-ℕ⁺ two-ℕ⁺) ( transitive-leq-ℝ _ _ _ ( cauchy-schwarz-inequality-ℝ-Inner-Product-Space V u v) ( leq-abs-ℝ _)))) ≤ ( square-ℝ (norm-ℝ-Inner-Product-Space V u)) +ℝ ( ( real-ℕ 2) *ℝ ( ( norm-ℝ-Inner-Product-Space V u) *ℝ norm-ℝ-Inner-Product-Space V v)) +ℝ ( square-ℝ (norm-ℝ-Inner-Product-Space V v)) by leq-eq-ℝ ( ap-add-ℝ ( ap-add-ℝ ( inv ( eq-real-square-sqrt-ℝ⁰⁺ ( nonnegative-squared-norm-ℝ-Inner-Product-Space V u))) ( refl)) ( inv ( eq-real-square-sqrt-ℝ⁰⁺ ( nonnegative-squared-norm-ℝ-Inner-Product-Space V v)))) ≤ square-ℝ ( ( norm-ℝ-Inner-Product-Space V u) +ℝ ( norm-ℝ-Inner-Product-Space V v)) by leq-eq-ℝ (inv (square-add-ℝ _ _)) is-triangular-norm-ℝ-Inner-Product-Space : (u v : type-ℝ-Inner-Product-Space V) → leq-ℝ ( norm-ℝ-Inner-Product-Space V (add-ℝ-Inner-Product-Space V u v)) ( norm-ℝ-Inner-Product-Space V u +ℝ norm-ℝ-Inner-Product-Space V v) is-triangular-norm-ℝ-Inner-Product-Space u v = tr ( leq-ℝ _) ( ( inv (eq-abs-sqrt-square-ℝ _)) ∙ ( abs-real-ℝ⁰⁺ ( ( nonnegative-norm-ℝ-Inner-Product-Space V u) +ℝ⁰⁺ ( nonnegative-norm-ℝ-Inner-Product-Space V v)))) ( preserves-leq-sqrt-ℝ⁰⁺ ( nonnegative-squared-norm-ℝ-Inner-Product-Space V ( add-ℝ-Inner-Product-Space V u v)) ( nonnegative-square-ℝ ( norm-ℝ-Inner-Product-Space V u +ℝ norm-ℝ-Inner-Product-Space V v)) ( is-triangular-squared-norm-ℝ-Inner-Product-Space u v)) is-seminorm-norm-ℝ-Inner-Product-Space : is-seminorm-ℝ-Vector-Space ( vector-space-ℝ-Inner-Product-Space V) ( norm-ℝ-Inner-Product-Space V) is-seminorm-norm-ℝ-Inner-Product-Space = ( is-triangular-norm-ℝ-Inner-Product-Space , is-absolutely-homogeneous-norm-ℝ-Inner-Product-Space V) abstract is-extensional-norm-ℝ-Inner-Product-Space : (v : type-ℝ-Inner-Product-Space V) → (norm-ℝ-Inner-Product-Space V v = raise-ℝ l1 zero-ℝ) → is-zero-ℝ-Inner-Product-Space V v is-extensional-norm-ℝ-Inner-Product-Space v ∥v∥=0 = is-extensional-diagonal-inner-product-ℝ-Inner-Product-Space ( V) ( v) ( equational-reasoning squared-norm-ℝ-Inner-Product-Space V v = square-ℝ (norm-ℝ-Inner-Product-Space V v) by inv ( eq-real-square-sqrt-ℝ⁰⁺ ( nonnegative-squared-norm-ℝ-Inner-Product-Space V v)) = square-ℝ (raise-ℝ l1 zero-ℝ) by ap square-ℝ ∥v∥=0 = raise-ℝ l1 zero-ℝ by square-raise-zero-ℝ l1) norm-normed-vector-space-ℝ-Inner-Product-Space : norm-ℝ-Vector-Space (vector-space-ℝ-Inner-Product-Space V) norm-normed-vector-space-ℝ-Inner-Product-Space = ( ( norm-ℝ-Inner-Product-Space V , is-seminorm-norm-ℝ-Inner-Product-Space) , is-extensional-norm-ℝ-Inner-Product-Space) normed-vector-space-ℝ-Inner-Product-Space : Normed-ℝ-Vector-Space l1 l2 normed-vector-space-ℝ-Inner-Product-Space = ( vector-space-ℝ-Inner-Product-Space V , norm-normed-vector-space-ℝ-Inner-Product-Space) metric-space-ℝ-Inner-Product-Space : Metric-Space l2 l1 metric-space-ℝ-Inner-Product-Space = metric-space-Normed-ℝ-Vector-Space normed-vector-space-ℝ-Inner-Product-Space
Properties
The metric space of the inner product space of ℝ over itself is the standard metric space of ℝ
abstract isometric-eq-metric-space-real-inner-product-space-normed-real-vector-space-ℝ : (l : Level) → isometric-eq-Metric-Space ( metric-space-ℝ-Inner-Product-Space (real-inner-product-space-ℝ l)) ( metric-space-Normed-ℝ-Vector-Space (normed-real-vector-space-ℝ l)) isometric-eq-metric-space-real-inner-product-space-normed-real-vector-space-ℝ l = ( refl , λ d x y → iff-eq ( ap ( λ m → leq-prop-ℝ m (real-ℚ⁺ d)) ( inv (eq-abs-sqrt-square-ℝ _)))) eq-metric-space-real-inner-product-space-normed-real-vector-space-ℝ : (l : Level) → metric-space-ℝ-Inner-Product-Space (real-inner-product-space-ℝ l) = metric-space-Normed-ℝ-Vector-Space (normed-real-vector-space-ℝ l) eq-metric-space-real-inner-product-space-normed-real-vector-space-ℝ l = eq-isometric-eq-Metric-Space _ _ ( isometric-eq-metric-space-real-inner-product-space-normed-real-vector-space-ℝ ( l)) eq-metric-space-real-inner-product-space-ℝ : (l : Level) → metric-space-ℝ-Inner-Product-Space (real-inner-product-space-ℝ l) = metric-space-ℝ l eq-metric-space-real-inner-product-space-ℝ l = ( eq-metric-space-real-inner-product-space-normed-real-vector-space-ℝ l) ∙ ( eq-metric-space-normed-real-vector-space-metric-space-ℝ l)
Recent changes
- 2025-12-03. Louis Wasserman. Hilbert spaces (#1713).