Reflective Galois connections between large posets

Content created by Egbert Rijke, Fredrik Bakke and Maša Žaucer.

Created on 2023-06-08.
Last modified on 2023-11-24.

module order-theory.reflective-galois-connections-large-posets where
Imports
open import foundation.cartesian-product-types
open import foundation.universe-levels

open import order-theory.galois-connections-large-posets
open import order-theory.large-posets
open import order-theory.order-preserving-maps-large-posets

Idea

A reflective galois connection between large posets P and Q is a Galois connection f : P ⇆ Q : g such that f ∘ g : Q → P is the identity map.

Definitions

The predicate of being a reflective Galois connection

module _
  {αP αQ γ δ : Level  Level} {βP βQ : Level  Level  Level}
  (P : Large-Poset αP βP) (Q : Large-Poset αQ βQ)
  (G : galois-connection-Large-Poset γ δ P Q)
  where

  private
    f = map-lower-adjoint-galois-connection-Large-Poset P Q G
    g = map-upper-adjoint-galois-connection-Large-Poset P Q G

  is-reflective-galois-connection-Large-Poset : UUω
  is-reflective-galois-connection-Large-Poset =
    {l : Level} (x : type-Large-Poset Q l) 
    leq-Large-Poset Q (f (g x)) x ×
    leq-Large-Poset Q x (f (g x))

The type of reflective Galois connections

module _
  {αP αQ : Level  Level} {βP βQ : Level  Level  Level}
  {γ δ : Level  Level}
  (P : Large-Poset αP βP) (Q : Large-Poset αQ βQ)
  where

  record reflective-galois-connection-Large-Poset : UUω
    where
    field
      galois-connection-reflective-galois-connection-Large-Poset :
        galois-connection-Large-Poset γ δ P Q
      is-reflective-reflective-galois-connection-Large-Poset :
        is-reflective-galois-connection-Large-Poset P Q
          galois-connection-reflective-galois-connection-Large-Poset

  open reflective-galois-connection-Large-Poset public

  module _
    (G : reflective-galois-connection-Large-Poset)
    where

    lower-adjoint-reflective-galois-connection-Large-Poset :
      hom-Large-Poset γ P Q
    lower-adjoint-reflective-galois-connection-Large-Poset =
      lower-adjoint-galois-connection-Large-Poset
        ( galois-connection-reflective-galois-connection-Large-Poset G)

Recent changes