Reflective Galois connections between large posets
Content created by Egbert Rijke, Fredrik Bakke and Maša Žaucer.
Created on 2023-06-08.
Last modified on 2023-11-24.
module order-theory.reflective-galois-connections-large-posets where
Imports
open import foundation.cartesian-product-types open import foundation.universe-levels open import order-theory.galois-connections-large-posets open import order-theory.large-posets open import order-theory.order-preserving-maps-large-posets
Idea
A reflective galois connection between
large posets P
and Q
is a
Galois connection
f : P ⇆ Q : g
such that f ∘ g : Q → P
is the identity map.
Definitions
The predicate of being a reflective Galois connection
module _ {αP αQ γ δ : Level → Level} {βP βQ : Level → Level → Level} (P : Large-Poset αP βP) (Q : Large-Poset αQ βQ) (G : galois-connection-Large-Poset γ δ P Q) where private f = map-lower-adjoint-galois-connection-Large-Poset P Q G g = map-upper-adjoint-galois-connection-Large-Poset P Q G is-reflective-galois-connection-Large-Poset : UUω is-reflective-galois-connection-Large-Poset = {l : Level} (x : type-Large-Poset Q l) → leq-Large-Poset Q (f (g x)) x × leq-Large-Poset Q x (f (g x))
The type of reflective Galois connections
module _ {αP αQ : Level → Level} {βP βQ : Level → Level → Level} {γ δ : Level → Level} (P : Large-Poset αP βP) (Q : Large-Poset αQ βQ) where record reflective-galois-connection-Large-Poset : UUω where field galois-connection-reflective-galois-connection-Large-Poset : galois-connection-Large-Poset γ δ P Q is-reflective-reflective-galois-connection-Large-Poset : is-reflective-galois-connection-Large-Poset P Q galois-connection-reflective-galois-connection-Large-Poset open reflective-galois-connection-Large-Poset public module _ (G : reflective-galois-connection-Large-Poset) where lower-adjoint-reflective-galois-connection-Large-Poset : hom-Large-Poset γ P Q lower-adjoint-reflective-galois-connection-Large-Poset = lower-adjoint-galois-connection-Large-Poset ( galois-connection-reflective-galois-connection-Large-Poset G)
Recent changes
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-06-09. Fredrik Bakke. Remove unused imports (#648).
- 2023-06-08. Egbert Rijke, Maša Žaucer and Fredrik Bakke. The Zariski locale of a commutative ring (#619).