Sums of finite sequences of elements in commutative monoids
Content created by Louis Wasserman.
Created on 2025-06-03.
Last modified on 2025-08-31.
{-# OPTIONS --lossy-unification #-} module group-theory.sums-of-finite-sequences-of-elements-commutative-monoids where
Imports
open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.natural-numbers open import finite-group-theory.permutations-standard-finite-types open import foundation.action-on-identifications-functions open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.universe-levels open import group-theory.commutative-monoids open import group-theory.sums-of-finite-sequences-of-elements-commutative-semigroups open import group-theory.sums-of-finite-sequences-of-elements-monoids open import linear-algebra.finite-sequences-in-commutative-monoids open import univalent-combinatorics.coproduct-types open import univalent-combinatorics.standard-finite-types
Idea
The
sum operation¶
extends the binary operation on a
commutative monoid M
to any
finite sequence of elements of M
.
We use additive terminology consistently with the linear algebra definition of finite sequences in commutative monoids despite the use of multiplicative terminology for commutative monoids in general.
Definition
sum-fin-sequence-type-Commutative-Monoid : {l : Level} (M : Commutative-Monoid l) (n : ℕ) → fin-sequence-type-Commutative-Monoid M n → type-Commutative-Monoid M sum-fin-sequence-type-Commutative-Monoid M = sum-fin-sequence-type-Monoid (monoid-Commutative-Monoid M)
Properties
Nontrivial sums in a commutative monoid equal sums in the underlying commutative semigroup
module _ {l : Level} (M : Commutative-Monoid l) where eq-sum-commutative-semigroup-sum-fin-sequence-type-Commutative-Monoid : (n : ℕ) (f : fin-sequence-type-Commutative-Monoid M (succ-ℕ n)) → sum-fin-sequence-type-Commutative-Monoid M (succ-ℕ n) f = sum-fin-sequence-type-Commutative-Semigroup ( commutative-semigroup-Commutative-Monoid M) ( n) ( f) eq-sum-commutative-semigroup-sum-fin-sequence-type-Commutative-Monoid zero-ℕ f = left-unit-law-mul-Commutative-Monoid M _ eq-sum-commutative-semigroup-sum-fin-sequence-type-Commutative-Monoid (succ-ℕ n) f = ap ( mul-Commutative-Monoid' M _) ( eq-sum-commutative-semigroup-sum-fin-sequence-type-Commutative-Monoid ( n) ( f ∘ inl))
Sums of one and two elements
module _ {l : Level} (M : Commutative-Monoid l) where compute-sum-one-element-Commutative-Monoid : (f : fin-sequence-type-Commutative-Monoid M 1) → sum-fin-sequence-type-Commutative-Monoid M 1 f = head-fin-sequence-type-Commutative-Monoid M 0 f compute-sum-one-element-Commutative-Monoid = compute-sum-one-element-Monoid (monoid-Commutative-Monoid M) compute-sum-two-elements-Commutative-Monoid : (f : fin-sequence-type-Commutative-Monoid M 2) → sum-fin-sequence-type-Commutative-Monoid M 2 f = mul-Commutative-Monoid M (f (zero-Fin 1)) (f (one-Fin 1)) compute-sum-two-elements-Commutative-Monoid = compute-sum-two-elements-Monoid (monoid-Commutative-Monoid M)
Sums are homotopy invariant
module _ {l : Level} (M : Commutative-Monoid l) where htpy-sum-fin-sequence-type-Commutative-Monoid : (n : ℕ) {f g : fin-sequence-type-Commutative-Monoid M n} → (f ~ g) → sum-fin-sequence-type-Commutative-Monoid M n f = sum-fin-sequence-type-Commutative-Monoid M n g htpy-sum-fin-sequence-type-Commutative-Monoid = htpy-sum-fin-sequence-type-Monoid (monoid-Commutative-Monoid M)
Sums are equal to the zero-th term plus the rest
module _ {l : Level} (M : Commutative-Monoid l) where cons-sum-fin-sequence-type-Commutative-Monoid : (n : ℕ) (f : fin-sequence-type-Commutative-Monoid M (succ-ℕ n)) → {x : type-Commutative-Monoid M} → head-fin-sequence-type-Commutative-Monoid M n f = x → sum-fin-sequence-type-Commutative-Monoid M (succ-ℕ n) f = mul-Commutative-Monoid M ( sum-fin-sequence-type-Commutative-Monoid M n (f ∘ inl-Fin n)) ( x) cons-sum-fin-sequence-type-Commutative-Monoid = cons-sum-fin-sequence-type-Monoid (monoid-Commutative-Monoid M) snoc-sum-fin-sequence-type-Commutative-Monoid : (n : ℕ) (f : fin-sequence-type-Commutative-Monoid M (succ-ℕ n)) → {x : type-Commutative-Monoid M} → f (zero-Fin n) = x → sum-fin-sequence-type-Commutative-Monoid M (succ-ℕ n) f = mul-Commutative-Monoid M ( x) ( sum-fin-sequence-type-Commutative-Monoid M n (f ∘ inr-Fin n)) snoc-sum-fin-sequence-type-Commutative-Monoid = snoc-sum-fin-sequence-type-Monoid (monoid-Commutative-Monoid M)
Extending a sum of elements in a monoid
module _ {l : Level} (M : Commutative-Monoid l) where extend-sum-fin-sequence-type-Commutative-Monoid : (n : ℕ) (f : fin-sequence-type-Commutative-Monoid M n) → sum-fin-sequence-type-Commutative-Monoid M ( succ-ℕ n) ( cons-fin-sequence-type-Commutative-Monoid ( M) ( n) ( unit-Commutative-Monoid M) f) = sum-fin-sequence-type-Commutative-Monoid M n f extend-sum-fin-sequence-type-Commutative-Monoid = extend-sum-fin-sequence-type-Monoid (monoid-Commutative-Monoid M)
Shifting a sum of elements in a monoid
module _ {l : Level} (M : Commutative-Monoid l) where shift-sum-fin-sequence-type-Commutative-Monoid : (n : ℕ) (f : fin-sequence-type-Commutative-Monoid M n) → sum-fin-sequence-type-Commutative-Monoid M ( succ-ℕ n) ( snoc-fin-sequence-type-Commutative-Monoid M n f ( unit-Commutative-Monoid M)) = sum-fin-sequence-type-Commutative-Monoid M n f shift-sum-fin-sequence-type-Commutative-Monoid = shift-sum-fin-sequence-type-Monoid (monoid-Commutative-Monoid M)
A sum of zeroes is zero
module _ {l : Level} (M : Commutative-Monoid l) where sum-zero-fin-sequence-type-Commutative-Monoid : (n : ℕ) → sum-fin-sequence-type-Commutative-Monoid ( M) ( n) ( zero-fin-sequence-type-Commutative-Monoid M n) = unit-Commutative-Monoid M sum-zero-fin-sequence-type-Commutative-Monoid = sum-zero-fin-sequence-type-Monoid (monoid-Commutative-Monoid M)
Splitting sums of n + m
elements into a sum of n
elements and a sum of m
elements
split-sum-fin-sequence-type-Commutative-Monoid : {l : Level} (M : Commutative-Monoid l) (n m : ℕ) (f : fin-sequence-type-Commutative-Monoid M (n +ℕ m)) → sum-fin-sequence-type-Commutative-Monoid M (n +ℕ m) f = mul-Commutative-Monoid M ( sum-fin-sequence-type-Commutative-Monoid M n (f ∘ inl-coproduct-Fin n m)) ( sum-fin-sequence-type-Commutative-Monoid M m (f ∘ inr-coproduct-Fin n m)) split-sum-fin-sequence-type-Commutative-Monoid M = split-sum-fin-sequence-type-Monoid (monoid-Commutative-Monoid M)
Permutations preserve sums
module _ {l : Level} (M : Commutative-Monoid l) where abstract preserves-sum-permutation-fin-sequence-type-Commutative-Monoid : (n : ℕ) → (σ : Permutation n) → (f : fin-sequence-type-Commutative-Monoid M n) → sum-fin-sequence-type-Commutative-Monoid M n f = sum-fin-sequence-type-Commutative-Monoid M n (f ∘ map-equiv σ) preserves-sum-permutation-fin-sequence-type-Commutative-Monoid zero-ℕ _ f = refl preserves-sum-permutation-fin-sequence-type-Commutative-Monoid (succ-ℕ n) σ f = eq-sum-commutative-semigroup-sum-fin-sequence-type-Commutative-Monoid ( M) ( n) ( f) ∙ preserves-sum-permutation-fin-sequence-type-Commutative-Semigroup ( commutative-semigroup-Commutative-Monoid M) ( n) ( σ) ( f) ∙ inv ( eq-sum-commutative-semigroup-sum-fin-sequence-type-Commutative-Monoid ( M) ( n) ( f ∘ map-equiv σ))
See also
External links
- Sum at Wikidata
Recent changes
- 2025-08-31. Louis Wasserman. Commutative semigroups (#1494).
- 2025-06-03. Louis Wasserman. Sums and products over arbitrary finite types (#1367).