Positive closed intervals in the rational numbers
Content created by Louis Wasserman.
Created on 2025-11-26.
Last modified on 2025-11-26.
module elementary-number-theory.positive-closed-intervals-rational-numbers where
Imports
open import elementary-number-theory.closed-intervals-rational-numbers open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.propositions open import foundation.universe-levels
Idea
A closed interval of rational numbers is positive¶ if every element in it is positive, or equivalently, its lower bound is positive.
Definition
is-positive-prop-closed-interval-ℚ : closed-interval-ℚ → Prop lzero is-positive-prop-closed-interval-ℚ ((a , b) , _) = is-positive-prop-ℚ a is-positive-closed-interval-ℚ : closed-interval-ℚ → UU lzero is-positive-closed-interval-ℚ ((a , b) , _) = is-positive-ℚ a abstract is-positive-upper-bound-is-positive-closed-interval-ℚ : ([a,b] : closed-interval-ℚ) → is-positive-closed-interval-ℚ [a,b] → is-positive-ℚ (upper-bound-closed-interval-ℚ [a,b]) is-positive-upper-bound-is-positive-closed-interval-ℚ ((a , b) , a≤b) pos-a = is-positive-leq-ℚ⁺ (a , pos-a) a≤b
Recent changes
- 2025-11-26. Louis Wasserman. Complex vector spaces (#1692).