Series in real Banach spaces

Content created by Louis Wasserman.

Created on 2025-12-27.
Last modified on 2025-12-27.

module functional-analysis.series-real-banach-spaces where
Imports
open import analysis.metric-abelian-groups-normed-real-vector-spaces
open import analysis.series-metric-abelian-groups
open import analysis.series-real-numbers

open import elementary-number-theory.addition-natural-numbers
open import elementary-number-theory.natural-numbers

open import foundation.function-types
open import foundation.identity-types
open import foundation.universe-levels

open import functional-analysis.real-banach-spaces

open import lists.sequences

Idea

A series is a series in the metric abelian group associated with the underlying normed real vector space.

Definition

module _
  {l1 l2 : Level}
  (V : ℝ-Banach-Space l1 l2)
  where

  series-ℝ-Banach-Space : UU l2
  series-ℝ-Banach-Space =
    series-Metric-Ab
      ( metric-ab-Normed-ℝ-Vector-Space (normed-vector-space-ℝ-Banach-Space V))

  series-terms-ℝ-Banach-Space :
    sequence (type-ℝ-Banach-Space V)  series-ℝ-Banach-Space
  series-terms-ℝ-Banach-Space = series-terms-Metric-Ab

  term-series-ℝ-Banach-Space :
    series-ℝ-Banach-Space  sequence (type-ℝ-Banach-Space V)
  term-series-ℝ-Banach-Space = term-series-Metric-Ab

  partial-sum-series-ℝ-Banach-Space :
    series-ℝ-Banach-Space  sequence (type-ℝ-Banach-Space V)
  partial-sum-series-ℝ-Banach-Space = partial-sum-series-Metric-Ab

Properties

The series of norms

module _
  {l1 l2 : Level}
  (V : ℝ-Banach-Space l1 l2)
  (σ : series-ℝ-Banach-Space V)
  where

  map-norm-series-ℝ-Banach-Space : series-ℝ l1
  map-norm-series-ℝ-Banach-Space =
    series-terms-ℝ (map-norm-ℝ-Banach-Space V  term-series-ℝ-Banach-Space V σ)

Dropping terms from a series

module _
  {l1 l2 : Level}
  (V : ℝ-Banach-Space l1 l2)
  where

  drop-series-ℝ-Banach-Space :
      series-ℝ-Banach-Space V  series-ℝ-Banach-Space V
  drop-series-ℝ-Banach-Space = drop-series-Metric-Ab

The partial sums of a series after dropping terms

module _
  {l1 l2 : Level}
  (V : ℝ-Banach-Space l1 l2)
  where

  abstract
    partial-sum-drop-series-ℝ-Banach-Space :
      (n : ) (σ : series-ℝ-Banach-Space V) (i : ) 
      partial-sum-series-ℝ-Banach-Space V
        ( drop-series-ℝ-Banach-Space V n σ)
        ( i) 
      diff-ℝ-Banach-Space V
        ( partial-sum-series-ℝ-Banach-Space V σ (n +ℕ i))
        ( partial-sum-series-ℝ-Banach-Space V σ n)
    partial-sum-drop-series-ℝ-Banach-Space = partial-sum-drop-series-Metric-Ab

Recent changes