Series in real Banach spaces
Content created by Louis Wasserman.
Created on 2025-12-27.
Last modified on 2025-12-27.
module functional-analysis.series-real-banach-spaces where
Imports
open import analysis.metric-abelian-groups-normed-real-vector-spaces open import analysis.series-metric-abelian-groups open import analysis.series-real-numbers open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.function-types open import foundation.identity-types open import foundation.universe-levels open import functional-analysis.real-banach-spaces open import lists.sequences
Idea
A series¶ is a series in the metric abelian group associated with the underlying normed real vector space.
Definition
module _ {l1 l2 : Level} (V : ℝ-Banach-Space l1 l2) where series-ℝ-Banach-Space : UU l2 series-ℝ-Banach-Space = series-Metric-Ab ( metric-ab-Normed-ℝ-Vector-Space (normed-vector-space-ℝ-Banach-Space V)) series-terms-ℝ-Banach-Space : sequence (type-ℝ-Banach-Space V) → series-ℝ-Banach-Space series-terms-ℝ-Banach-Space = series-terms-Metric-Ab term-series-ℝ-Banach-Space : series-ℝ-Banach-Space → sequence (type-ℝ-Banach-Space V) term-series-ℝ-Banach-Space = term-series-Metric-Ab partial-sum-series-ℝ-Banach-Space : series-ℝ-Banach-Space → sequence (type-ℝ-Banach-Space V) partial-sum-series-ℝ-Banach-Space = partial-sum-series-Metric-Ab
Properties
The series of norms
module _ {l1 l2 : Level} (V : ℝ-Banach-Space l1 l2) (σ : series-ℝ-Banach-Space V) where map-norm-series-ℝ-Banach-Space : series-ℝ l1 map-norm-series-ℝ-Banach-Space = series-terms-ℝ (map-norm-ℝ-Banach-Space V ∘ term-series-ℝ-Banach-Space V σ)
Dropping terms from a series
module _ {l1 l2 : Level} (V : ℝ-Banach-Space l1 l2) where drop-series-ℝ-Banach-Space : ℕ → series-ℝ-Banach-Space V → series-ℝ-Banach-Space V drop-series-ℝ-Banach-Space = drop-series-Metric-Ab
The partial sums of a series after dropping terms
module _ {l1 l2 : Level} (V : ℝ-Banach-Space l1 l2) where abstract partial-sum-drop-series-ℝ-Banach-Space : (n : ℕ) (σ : series-ℝ-Banach-Space V) (i : ℕ) → partial-sum-series-ℝ-Banach-Space V ( drop-series-ℝ-Banach-Space V n σ) ( i) = diff-ℝ-Banach-Space V ( partial-sum-series-ℝ-Banach-Space V σ (n +ℕ i)) ( partial-sum-series-ℝ-Banach-Space V σ n) partial-sum-drop-series-ℝ-Banach-Space = partial-sum-drop-series-Metric-Ab
Recent changes
- 2025-12-27. Louis Wasserman. Split out functional analysis as its own module (#1766).