Functoriality of the pullback-hom
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-10-16.
Last modified on 2024-10-27.
module orthogonal-factorization-systems.functoriality-pullback-hom where
Imports
open import foundation.action-on-identifications-binary-functions open import foundation.action-on-identifications-functions open import foundation.bicomposition-functions open import foundation.composition-algebra open import foundation.dependent-pair-types open import foundation.equality-dependent-pair-types open import foundation.function-extensionality open import foundation.function-types open import foundation.functoriality-morphisms-arrows open import foundation.functoriality-pullbacks open import foundation.homotopies open import foundation.homotopies-morphisms-arrows open import foundation.homotopies-morphisms-cospan-diagrams open import foundation.identity-types open import foundation.morphisms-arrows open import foundation.morphisms-cospan-diagrams open import foundation.postcomposition-functions open import foundation.precomposition-functions open import foundation.retracts-of-maps open import foundation.universe-levels open import foundation.whiskering-higher-homotopies-composition open import foundation.whiskering-homotopies-composition open import orthogonal-factorization-systems.pullback-hom
Idea
The construction of the pullback-hom is functorial. I.e., we have a functorial action on pairs of morphisms of arrows
(α : f' ⇒ f, β : g ⇒ g') ↦ α ⋔ β : (f ⋔ g) ⇒ (f' ⋔ g')
We construct this action as the restriction of a more general action on morphisms of exponentiated cospan diagrams of the form:
- ∘ f g ∘ -
(B → Y) ------> (A → Y) <------ (A → X)
| | |
| | |
∨ - ∘ f' ∨ g' ∘ - ∨
(B' → Y') ----> (A' → Y') <---- (A' → X').
In general, such morphisms need not necessarily come from pairs of morphisms of the underlying arrows.
This gives us a commuting triangle of functors
[pairs of arrows of types] ---> [exponentiated cospan diagrams]
\ /
\ /
∨ ∨
[arrows of types]
where the functorial action of the pullback-hom on arrows is the left vertical arrow.
Functoriality of pullback-homs on exponentiated cospan diagrams
By functoriality of pullbacks, there is a functor that maps cospan diagrams of the form
- ∘ f g ∘ -
(B → Y) ------> (A → Y) <------ (A → X)
to the type of morphisms of arrows from f
to
g
f ⇒ g -------> A → X
| ⌟ |
| | g ∘ -
∨ ∨
B → Y -------> A → Y.
- ∘ f
For every morphism of cospan diagrams of this form
- ∘ f g ∘ -
(B → Y) ------> (A → Y) <------ (A → X)
| | |
| | |
∨ - ∘ f' ∨ g' ∘ - ∨
(B' → Y') ----> (A' → Y') <---- (A' → X')
we thus have a commuting cube given by the functorial action of pullbacks
f ⇒ g -----------> A → X
/ | ⌟ / |
/ | / |
∨ | ∨ |
f' ⇒ g' ---------> A' → X' |
| ⌟ ∨ | ∨
| B → Y ---- | ----> A → Y
| / | /
| / | /
∨ ∨ ∨ ∨
B' → Y' ---------> A' → Y'.
This is the functorial action of pullback-homs on exponentiated cospan diagrams¶.
Functoriality of pullback-homs on pairs of morphisms of arrows
There is a bifunctor mapping pairs of arrows to cospan diagrams of the form
described above. This bifunctor is contravariant in the left argument and
covariant in the right. I.e., a pair of morphisms of arrows f' ⇒ f
and
g ⇒ g'
gives a morphism of cospan diagrams
- ∘ f g ∘ -
(B → Y) ------> (A → Y) <------ (A → X)
| | |
| | |
∨ - ∘ f' ∨ g' ∘ - ∨
(B' → Y') ----> (A' → Y') <---- (A' → X')
that is given componentwise by bicomposition of functions.
Restricting along this bifunctor, the functorial action of pullbacks extends to a bifunctorial action that we call the bifunctoriality of the pullback-hom¶.
Given a pair of maps f
and g
, the pullback-hom produces a new map
f ⋔ g : (B → X) → (f ⇒ g)
, and given morphisms of arrows f' ⇒ f
and
g ⇒ g'
, we obtain a morphism of pullback-hom arrows
(B → X) -----> (B' → X')
| |
f ⋔ g | | f' ⋔ g'
∨ ∨
(f ⇒ g) -----> (f' ⇒ g').
Definitions
Functorial action on maps of the pullback-hom
module _ {l11 l12 l13 l14 l21 l22 l23 l24 : Level} {A1 : UU l11} {B1 : UU l12} {X1 : UU l13} {Y1 : UU l14} {A2 : UU l21} {B2 : UU l22} {X2 : UU l23} {Y2 : UU l24} (f1 : A1 → B1) (g1 : X1 → Y1) (f2 : A2 → B2) (g2 : X2 → Y2) where map-pullback-hom : hom-cospan-diagram ( cospan-diagram-hom-arrow f2 g2) ( cospan-diagram-hom-arrow f1 g1) → hom-arrow f2 g2 → hom-arrow f1 g1 map-pullback-hom = map-pullback-cone ( cospan-diagram-hom-arrow f2 g2) ( cospan-diagram-hom-arrow f1 g1) ( pullback-cone-hom-arrow-pullback-hom f2 g2) ( pullback-cone-hom-arrow-pullback-hom f1 g1)
Recent changes
- 2024-10-27. Fredrik Bakke. Functoriality of morphisms of arrows (#1130).
- 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).
- 2024-01-28. Egbert Rijke. Span diagrams (#1007).
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-10-16. Fredrik Bakke and Egbert Rijke. Sequential limits (#839).