Functoriality of the pullback-hom

Content created by Egbert Rijke and Fredrik Bakke.

Created on 2023-10-16.
Last modified on 2024-10-27.

module orthogonal-factorization-systems.functoriality-pullback-hom where
Imports
open import foundation.action-on-identifications-binary-functions
open import foundation.action-on-identifications-functions
open import foundation.bicomposition-functions
open import foundation.composition-algebra
open import foundation.dependent-pair-types
open import foundation.equality-dependent-pair-types
open import foundation.function-extensionality
open import foundation.function-types
open import foundation.functoriality-morphisms-arrows
open import foundation.functoriality-pullbacks
open import foundation.homotopies
open import foundation.homotopies-morphisms-arrows
open import foundation.homotopies-morphisms-cospan-diagrams
open import foundation.identity-types
open import foundation.morphisms-arrows
open import foundation.morphisms-cospan-diagrams
open import foundation.postcomposition-functions
open import foundation.precomposition-functions
open import foundation.retracts-of-maps
open import foundation.universe-levels
open import foundation.whiskering-higher-homotopies-composition
open import foundation.whiskering-homotopies-composition

open import orthogonal-factorization-systems.pullback-hom

Idea

The construction of the pullback-hom is functorial. I.e., we have a functorial action on pairs of morphisms of arrows

  (α : f' ⇒ f, β : g ⇒ g') ↦ α ⋔ β : (f ⋔ g) ⇒ (f' ⋔ g')

We construct this action as the restriction of a more general action on morphisms of exponentiated cospan diagrams of the form:

            - ∘ f           g ∘ -
   (B → Y) ------> (A → Y) <------ (A → X)
      |               |               |
      |               |               |
      ∨     - ∘ f'    ∨    g' ∘ -     ∨
  (B' → Y') ----> (A' → Y') <---- (A' → X').

In general, such morphisms need not necessarily come from pairs of morphisms of the underlying arrows.

This gives us a commuting triangle of functors

  [pairs of arrows of types] ---> [exponentiated cospan diagrams]
                     \                 /
                      \               /
                       ∨             ∨
                      [arrows of types]

where the functorial action of the pullback-hom on arrows is the left vertical arrow.

Functoriality of pullback-homs on exponentiated cospan diagrams

By functoriality of pullbacks, there is a functor that maps cospan diagrams of the form

           - ∘ f           g ∘ -
  (B → Y) ------> (A → Y) <------ (A → X)

to the type of morphisms of arrows from f to g

  f ⇒ g -------> A → X
    | ⌟            |
    |              | g ∘ -
    ∨              ∨
  B → Y -------> A → Y.
          - ∘ f

For every morphism of cospan diagrams of this form

            - ∘ f           g ∘ -
   (B → Y) ------> (A → Y) <------ (A → X)
      |               |               |
      |               |               |
      ∨     - ∘ f'    ∨    g' ∘ -     ∨
  (B' → Y') ----> (A' → Y') <---- (A' → X')

we thus have a commuting cube given by the functorial action of pullbacks

                 f ⇒ g -----------> A → X
                /  | ⌟             /  |
              /    |             /    |
            ∨      |           ∨      |
      f' ⇒ g' ---------> A' → X'      |
         | ⌟       ∨        |         ∨
         |       B → Y ---- | ----> A → Y
         |      /           |      /
         |    /             |    /
         ∨  ∨               ∨  ∨
      B' → Y' ---------> A' → Y'.

This is the functorial action of pullback-homs on exponentiated cospan diagrams.

Functoriality of pullback-homs on pairs of morphisms of arrows

There is a bifunctor mapping pairs of arrows to cospan diagrams of the form described above. This bifunctor is contravariant in the left argument and covariant in the right. I.e., a pair of morphisms of arrows f' ⇒ f and g ⇒ g' gives a morphism of cospan diagrams

            - ∘ f           g ∘ -
   (B → Y) ------> (A → Y) <------ (A → X)
      |               |               |
      |               |               |
      ∨     - ∘ f'    ∨    g' ∘ -     ∨
  (B' → Y') ----> (A' → Y') <---- (A' → X')

that is given componentwise by bicomposition of functions.

Restricting along this bifunctor, the functorial action of pullbacks extends to a bifunctorial action that we call the bifunctoriality of the pullback-hom.

Given a pair of maps f and g, the pullback-hom produces a new map f ⋔ g : (B → X) → (f ⇒ g), and given morphisms of arrows f' ⇒ f and g ⇒ g', we obtain a morphism of pullback-hom arrows

     (B → X) -----> (B' → X')
        |               |
  f ⋔ g |               | f' ⋔ g'
        ∨               ∨
     (f ⇒ g) -----> (f' ⇒ g').

Definitions

Functorial action on maps of the pullback-hom

module _
  {l11 l12 l13 l14 l21 l22 l23 l24 : Level}
  {A1 : UU l11} {B1 : UU l12} {X1 : UU l13} {Y1 : UU l14}
  {A2 : UU l21} {B2 : UU l22} {X2 : UU l23} {Y2 : UU l24}
  (f1 : A1  B1) (g1 : X1  Y1)
  (f2 : A2  B2) (g2 : X2  Y2)
  where

  map-pullback-hom :
    hom-cospan-diagram
      ( cospan-diagram-hom-arrow f2 g2)
      ( cospan-diagram-hom-arrow f1 g1) 
    hom-arrow f2 g2 
    hom-arrow f1 g1
  map-pullback-hom =
    map-pullback-cone
      ( cospan-diagram-hom-arrow f2 g2)
      ( cospan-diagram-hom-arrow f1 g1)
      ( pullback-cone-hom-arrow-pullback-hom f2 g2)
      ( pullback-cone-hom-arrow-pullback-hom f1 g1)

Recent changes