Pointwise extensions of binary families of globular types
Content created by Egbert Rijke.
Created on 2024-12-03.
Last modified on 2024-12-03.
{-# OPTIONS --guardedness #-} module globular-types.pointwise-extensions-binary-families-globular-types where
Imports
open import foundation.dependent-pair-types open import foundation.universe-levels open import globular-types.binary-dependent-globular-types open import globular-types.globular-equivalences open import globular-types.globular-types open import globular-types.points-globular-types
Idea
Consider two globular types G
and H
, and
a binary family
K : G₀ → H₀ → Globular-Type
of globular types, indexed over the 0-cells of G
and H
. Furthermore,
consider a
binary dependent globular type
L
over G
and H
. We say that L
is a
pointwise extension¶
of K
if it comes equipped with a family of
globular equivalences
(x : point G) (y : point H) → ev-point L x y ≃ K x₀ y₀.
Definitions
The predicate of being a pointwise extension of a binary family of globular types
module _ {l1 l2 l3 l4 l5 l6 l7 l8 : Level} {G : Globular-Type l1 l2} {H : Globular-Type l3 l4} (K : 0-cell-Globular-Type G → 0-cell-Globular-Type H → Globular-Type l5 l6) (L : Binary-Dependent-Globular-Type l7 l8 G H) where is-pointwise-extension-binary-family-globular-types : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l5 ⊔ l6 ⊔ l7 ⊔ l8) is-pointwise-extension-binary-family-globular-types = (x : point-Globular-Type G) (y : point-Globular-Type H) → globular-equiv ( ev-point-Binary-Dependent-Globular-Type L x y) ( K (0-cell-point-Globular-Type x) (0-cell-point-Globular-Type y))
The type of pointwise extensions of a binary family of globular types
module _ {l1 l2 l3 l4 l5 l6 : Level} (l7 l8 : Level) {G : Globular-Type l1 l2} {H : Globular-Type l3 l4} (K : 0-cell-Globular-Type G → 0-cell-Globular-Type H → Globular-Type l5 l6) where pointwise-extension-binary-family-globular-types : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l5 ⊔ l6 ⊔ lsuc l7 ⊔ lsuc l8) pointwise-extension-binary-family-globular-types = Σ ( Binary-Dependent-Globular-Type l7 l8 G H) ( is-pointwise-extension-binary-family-globular-types K)
Recent changes
- 2024-12-03. Egbert Rijke. Hofmann-Streicher universes for graphs and globular types (#1196).