Multiplication of negative real numbers
Content created by Louis Wasserman.
Created on 2025-10-15.
Last modified on 2025-10-15.
{-# OPTIONS --lossy-unification #-} module real-numbers.multiplication-negative-real-numbers where
Imports
open import foundation.action-on-identifications-functions open import foundation.binary-transport open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.transport-along-identifications open import foundation.universe-levels open import real-numbers.dedekind-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.multiplication-positive-real-numbers open import real-numbers.multiplication-real-numbers open import real-numbers.negation-real-numbers open import real-numbers.negative-real-numbers open import real-numbers.positive-and-negative-real-numbers open import real-numbers.positive-real-numbers open import real-numbers.strict-inequality-real-numbers
Idea
The product¶ of two negative real numbers is their product as real numbers, and is positive.
Definition
abstract is-positive-mul-is-negative-ℝ : {l1 l2 : Level} {x : ℝ l1} {y : ℝ l2} → is-negative-ℝ x → is-negative-ℝ y → is-positive-ℝ (x *ℝ y) is-positive-mul-is-negative-ℝ {x = x} {y = y} is-neg-x is-neg-y = tr ( is-positive-ℝ) ( negative-law-mul-ℝ x y) ( is-positive-mul-ℝ ( neg-is-negative-ℝ x is-neg-x) ( neg-is-negative-ℝ y is-neg-y)) mul-ℝ⁻ : {l1 l2 : Level} → ℝ⁻ l1 → ℝ⁻ l2 → ℝ⁺ (l1 ⊔ l2) mul-ℝ⁻ (x , is-neg-x) (y , is-neg-y) = (x *ℝ y , is-positive-mul-is-negative-ℝ is-neg-x is-neg-y) infixl 40 _*ℝ⁻_ _*ℝ⁻_ : {l1 l2 : Level} → ℝ⁻ l1 → ℝ⁻ l2 → ℝ⁺ (l1 ⊔ l2) _*ℝ⁻_ = mul-ℝ⁻
Properties
Multiplication by a negative real number reverses strict inequality
abstract reverses-le-left-mul-ℝ⁻ : {l1 l2 l3 : Level} (x : ℝ⁻ l1) (y : ℝ l2) (z : ℝ l3) → le-ℝ y z → le-ℝ (real-ℝ⁻ x *ℝ z) (real-ℝ⁻ x *ℝ y) reverses-le-left-mul-ℝ⁻ x y z y<z = binary-tr ( le-ℝ) ( ap neg-ℝ (left-negative-law-mul-ℝ _ _) ∙ neg-neg-ℝ _) ( ap neg-ℝ (left-negative-law-mul-ℝ _ _) ∙ neg-neg-ℝ _) ( neg-le-ℝ _ _ (preserves-le-left-mul-ℝ⁺ (neg-ℝ⁻ x) y z y<z))
Multiplication by a negative real number reverses inequality
abstract reverses-leq-left-mul-ℝ⁻ : {l1 l2 l3 : Level} (x : ℝ⁻ l1) (y : ℝ l2) (z : ℝ l3) → leq-ℝ y z → leq-ℝ (real-ℝ⁻ x *ℝ z) (real-ℝ⁻ x *ℝ y) reverses-leq-left-mul-ℝ⁻ x y z y<z = binary-tr ( leq-ℝ) ( ap neg-ℝ (left-negative-law-mul-ℝ _ _) ∙ neg-neg-ℝ _) ( ap neg-ℝ (left-negative-law-mul-ℝ _ _) ∙ neg-neg-ℝ _) ( neg-leq-ℝ _ _ (preserves-leq-left-mul-ℝ⁺ (neg-ℝ⁻ x) y z y<z))
Recent changes
- 2025-10-15. Louis Wasserman. Inequalities from multiplication of signed real numbers (#1584).
- 2025-10-15. Louis Wasserman. Multiplicative inverses of nonzero real numbers (#1571).