Global subuniverses
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-11-24.
Last modified on 2024-08-18.
module foundation.global-subuniverses where
Imports
open import foundation.dependent-pair-types open import foundation.iterated-dependent-product-types open import foundation.subuniverses open import foundation.universe-levels open import foundation-core.equivalences open import foundation-core.fibers-of-maps open import foundation-core.identity-types open import foundation-core.propositions
Idea
Global subuniverses are subtypes of the large universe that are defined at every level, and are closed under equivalences of types. This does not follow from univalence, as equivalence induction only holds for homogeneous equivalences, i.e. equivalences in a single universe.
Definitions
The predicate on families of subuniverses of being closed under equivalences
module _ (α : Level → Level) (P : (l : Level) → subuniverse l (α l)) (l1 l2 : Level) where is-closed-under-equiv-subuniverses : UU (α l1 ⊔ α l2 ⊔ lsuc l1 ⊔ lsuc l2) is-closed-under-equiv-subuniverses = (X : UU l1) (Y : UU l2) → X ≃ Y → type-Prop (P l1 X) → type-Prop (P l2 Y) is-prop-is-closed-under-equiv-subuniverses : is-prop is-closed-under-equiv-subuniverses is-prop-is-closed-under-equiv-subuniverses = is-prop-iterated-Π 4 (λ X Y e x → is-prop-type-Prop (P l2 Y)) is-closed-under-equiv-subuniverses-Prop : Prop (α l1 ⊔ α l2 ⊔ lsuc l1 ⊔ lsuc l2) pr1 is-closed-under-equiv-subuniverses-Prop = is-closed-under-equiv-subuniverses pr2 is-closed-under-equiv-subuniverses-Prop = is-prop-is-closed-under-equiv-subuniverses
The global type of global subuniverses
record global-subuniverse (α : Level → Level) : UUω where field subuniverse-global-subuniverse : (l : Level) → subuniverse l (α l) is-closed-under-equiv-global-subuniverse : (l1 l2 : Level) → is-closed-under-equiv-subuniverses α subuniverse-global-subuniverse l1 l2 is-in-global-subuniverse : {l : Level} → UU l → UU (α l) is-in-global-subuniverse {l} X = is-in-subuniverse (subuniverse-global-subuniverse l) X is-prop-is-in-global-subuniverse : {l : Level} (X : UU l) → is-prop (is-in-global-subuniverse X) is-prop-is-in-global-subuniverse {l} X = is-prop-type-Prop (subuniverse-global-subuniverse l X) type-global-subuniverse : (l : Level) → UU (α l ⊔ lsuc l) type-global-subuniverse l = type-subuniverse (subuniverse-global-subuniverse l) inclusion-global-subuniverse : {l : Level} → type-global-subuniverse l → UU l inclusion-global-subuniverse {l} = inclusion-subuniverse (subuniverse-global-subuniverse l) open global-subuniverse public
The predicate of essentially being in a subuniverse
We say a type is essentially in a global universe at universe level l
if it
is essentially in the subuniverse at level l
.
module _ {α : Level → Level} (P : global-subuniverse α) {l1 : Level} (l2 : Level) (X : UU l1) where is-essentially-in-global-subuniverse : UU (α l2 ⊔ l1 ⊔ lsuc l2) is-essentially-in-global-subuniverse = is-essentially-in-subuniverse (subuniverse-global-subuniverse P l2) X is-prop-is-essentially-in-global-subuniverse : is-prop is-essentially-in-global-subuniverse is-prop-is-essentially-in-global-subuniverse = is-prop-is-essentially-in-subuniverse ( subuniverse-global-subuniverse P l2) X is-essentially-in-global-subuniverse-Prop : Prop (α l2 ⊔ l1 ⊔ lsuc l2) is-essentially-in-global-subuniverse-Prop = is-essentially-in-subuniverse-Prop (subuniverse-global-subuniverse P l2) X
Properties
Global subuniverses are closed under homogenous equivalences
This is true for any family of subuniverses indexed by universe levels.
module _ {α : Level → Level} (P : global-subuniverse α) {l : Level} {X Y : UU l} where is-in-global-subuniverse-homogenous-equiv : X ≃ Y → is-in-global-subuniverse P X → is-in-global-subuniverse P Y is-in-global-subuniverse-homogenous-equiv = is-in-subuniverse-equiv (subuniverse-global-subuniverse P l) is-in-global-subuniverse-homogenous-equiv' : X ≃ Y → is-in-global-subuniverse P Y → is-in-global-subuniverse P X is-in-global-subuniverse-homogenous-equiv' = is-in-subuniverse-equiv' (subuniverse-global-subuniverse P l)
Characterization of the identity type of global subuniverses at a universe level
module _ {α : Level → Level} {l : Level} (P : global-subuniverse α) where equiv-global-subuniverse-Level : (X Y : type-global-subuniverse P l) → UU l equiv-global-subuniverse-Level = equiv-subuniverse (subuniverse-global-subuniverse P l) equiv-eq-global-subuniverse-Level : (X Y : type-global-subuniverse P l) → X = Y → equiv-global-subuniverse-Level X Y equiv-eq-global-subuniverse-Level = equiv-eq-subuniverse (subuniverse-global-subuniverse P l) abstract is-equiv-equiv-eq-global-subuniverse-Level : (X Y : type-global-subuniverse P l) → is-equiv (equiv-eq-global-subuniverse-Level X Y) is-equiv-equiv-eq-global-subuniverse-Level = is-equiv-equiv-eq-subuniverse (subuniverse-global-subuniverse P l) extensionality-global-subuniverse-Level : (X Y : type-global-subuniverse P l) → (X = Y) ≃ equiv-global-subuniverse-Level X Y extensionality-global-subuniverse-Level = extensionality-subuniverse (subuniverse-global-subuniverse P l) eq-equiv-global-subuniverse-Level : {X Y : type-global-subuniverse P l} → equiv-global-subuniverse-Level X Y → X = Y eq-equiv-global-subuniverse-Level = eq-equiv-subuniverse (subuniverse-global-subuniverse P l) compute-eq-equiv-id-equiv-global-subuniverse-Level : {X : type-global-subuniverse P l} → eq-equiv-global-subuniverse-Level {X} {X} (id-equiv {A = pr1 X}) = refl compute-eq-equiv-id-equiv-global-subuniverse-Level = compute-eq-equiv-id-equiv-subuniverse (subuniverse-global-subuniverse P l)
Equivalences of families of types in a global subuniverse
fam-global-subuniverse : {α : Level → Level} (P : global-subuniverse α) {l1 : Level} (l2 : Level) (X : UU l1) → UU (α l2 ⊔ l1 ⊔ lsuc l2) fam-global-subuniverse P l2 X = X → type-global-subuniverse P l2 module _ {α : Level → Level} (P : global-subuniverse α) {l1 : Level} (l2 : Level) {X : UU l1} (Y Z : fam-global-subuniverse P l2 X) where equiv-fam-global-subuniverse : UU (l1 ⊔ l2) equiv-fam-global-subuniverse = equiv-fam-subuniverse (subuniverse-global-subuniverse P l2) Y Z equiv-eq-fam-global-subuniverse : Y = Z → equiv-fam-global-subuniverse equiv-eq-fam-global-subuniverse = equiv-eq-fam-subuniverse (subuniverse-global-subuniverse P l2) Y Z is-equiv-equiv-eq-fam-global-subuniverse : is-equiv equiv-eq-fam-global-subuniverse is-equiv-equiv-eq-fam-global-subuniverse = is-equiv-equiv-eq-fam-subuniverse (subuniverse-global-subuniverse P l2) Y Z extensionality-fam-global-subuniverse : (Y = Z) ≃ equiv-fam-global-subuniverse extensionality-fam-global-subuniverse = extensionality-fam-subuniverse (subuniverse-global-subuniverse P l2) Y Z eq-equiv-fam-global-subuniverse : equiv-fam-global-subuniverse → Y = Z eq-equiv-fam-global-subuniverse = map-inv-is-equiv is-equiv-equiv-eq-fam-global-subuniverse
See also
Recent changes
- 2024-08-18. Fredrik Bakke. Maps in subuniverses (#1163).
- 2024-01-27. Egbert Rijke. Fix “The predicate of” section headers (#1010).
- 2023-12-21. Fredrik Bakke. Action on homotopies of functions (#973).
- 2023-11-24. Fredrik Bakke. Global function classes (#890).