Apartness of complex numbers
Content created by Louis Wasserman.
Created on 2025-11-16.
Last modified on 2025-11-26.
module complex-numbers.apartness-complex-numbers where
Imports
open import complex-numbers.complex-numbers open import complex-numbers.similarity-complex-numbers open import foundation.apartness-relations open import foundation.dependent-pair-types open import foundation.disjunction open import foundation.empty-types open import foundation.function-types open import foundation.functoriality-disjunction open import foundation.large-apartness-relations open import foundation.negation open import foundation.propositions open import foundation.tight-apartness-relations open import foundation.universe-levels open import real-numbers.apartness-real-numbers
Idea
Two complex numbers are apart¶ if their real parts are apart or their imaginary parts are [apart].
Definition
module _ {l1 l2 : Level} (z : ℂ l1) (w : ℂ l2) where apart-prop-ℂ : Prop (l1 ⊔ l2) apart-prop-ℂ = (apart-prop-ℝ (re-ℂ z) (re-ℂ w)) ∨ (apart-prop-ℝ (im-ℂ z) (im-ℂ w)) apart-ℂ : UU (l1 ⊔ l2) apart-ℂ = type-Prop apart-prop-ℂ
Properties
Apartness is antireflexive
abstract antireflexive-apart-ℂ : {l : Level} (z : ℂ l) → ¬ (apart-ℂ z z) antireflexive-apart-ℂ (a , b) = elim-disjunction ( empty-Prop) ( antireflexive-apart-ℝ a) ( antireflexive-apart-ℝ b)
Apartness is symmetric
abstract symmetric-apart-ℂ : {l1 l2 : Level} (z : ℂ l1) (w : ℂ l2) → apart-ℂ z w → apart-ℂ w z symmetric-apart-ℂ (a , b) (c , d) = map-disjunction symmetric-apart-ℝ symmetric-apart-ℝ
Apartness is cotransitive
abstract cotransitive-apart-ℂ : {l1 l2 l3 : Level} (x : ℂ l1) (y : ℂ l2) (z : ℂ l3) → apart-ℂ x y → disjunction-type (apart-ℂ x z) (apart-ℂ z y) cotransitive-apart-ℂ x@(a , b) y@(c , d) z@(e , f) = elim-disjunction ( (apart-prop-ℂ x z) ∨ (apart-prop-ℂ z y)) ( map-disjunction inl-disjunction inl-disjunction ∘ cotransitive-apart-ℝ a c e) ( map-disjunction inr-disjunction inr-disjunction ∘ cotransitive-apart-ℝ b d f)
Apartness on the complex numbers is a large apartness relation
large-apartness-relation-ℂ : Large-Apartness-Relation _⊔_ ℂ apart-prop-Large-Apartness-Relation large-apartness-relation-ℂ = apart-prop-ℂ antirefl-Large-Apartness-Relation large-apartness-relation-ℂ = antireflexive-apart-ℂ symmetric-Large-Apartness-Relation large-apartness-relation-ℂ = symmetric-apart-ℂ cotransitive-Large-Apartness-Relation large-apartness-relation-ℂ = cotransitive-apart-ℂ
The apartness relation of complex numbers at a particular universe level
apartness-relation-ℂ : (l : Level) → Apartness-Relation l (ℂ l) apartness-relation-ℂ l = apartness-relation-Large-Apartness-Relation large-apartness-relation-ℂ l
If two complex numbers at the same universe level are not apart, they are equal
abstract is-tight-apartness-relation-ℂ : (l : Level) → is-tight-Apartness-Relation (apartness-relation-ℂ l) is-tight-apartness-relation-ℂ l (a +iℂ b) (c +iℂ d) ¬a+ib#c+id = eq-ℂ ( is-tight-apartness-relation-ℝ l a c (¬a+ib#c+id ∘ inl-disjunction)) ( is-tight-apartness-relation-ℝ l b d (¬a+ib#c+id ∘ inr-disjunction)) tight-apartness-relation-ℂ : (l : Level) → Tight-Apartness-Relation l (ℂ l) tight-apartness-relation-ℂ l = ( apartness-relation-ℂ l , is-tight-apartness-relation-ℂ l)
Apartness is preserved by similarity
abstract apart-right-sim-ℂ : {l1 l2 l3 : Level} → (z : ℂ l1) (x : ℂ l2) (y : ℂ l3) → sim-ℂ x y → apart-ℂ z x → apart-ℂ z y apart-right-sim-ℂ (a +iℂ b) (c +iℂ d) (e +iℂ f) (c~e , d~f) = map-disjunction ( apart-right-sim-ℝ a c e c~e) ( apart-right-sim-ℝ b d f d~f)
Recent changes
- 2025-11-26. Louis Wasserman. Complex vector spaces (#1692).
- 2025-11-16. Louis Wasserman. Multiplicative inverses of nonzero complex numbers (#1684).