Apartness of complex numbers

Content created by Louis Wasserman.

Created on 2025-11-16.
Last modified on 2025-11-16.

module complex-numbers.apartness-complex-numbers where
Imports
open import complex-numbers.complex-numbers

open import foundation.dependent-pair-types
open import foundation.disjunction
open import foundation.empty-types
open import foundation.function-types
open import foundation.functoriality-disjunction
open import foundation.large-apartness-relations
open import foundation.negation
open import foundation.propositions
open import foundation.universe-levels

open import real-numbers.apartness-real-numbers

Idea

Two complex numbers are apart if their real parts are apart or their imaginary parts are [apart].

Definition

module _
  {l1 l2 : Level} (z :  l1) (w :  l2)
  where

  apart-prop-ℂ : Prop (l1  l2)
  apart-prop-ℂ =
    (apart-prop-ℝ (re-ℂ z) (re-ℂ w))  (apart-prop-ℝ (im-ℂ z) (im-ℂ w))

  apart-ℂ : UU (l1  l2)
  apart-ℂ = type-Prop apart-prop-ℂ

Properties

Apartness is antireflexive

abstract
  antireflexive-apart-ℂ : {l : Level} (z :  l)  ¬ (apart-ℂ z z)
  antireflexive-apart-ℂ (a , b) =
    elim-disjunction
      ( empty-Prop)
      ( antireflexive-apart-ℝ a)
      ( antireflexive-apart-ℝ b)

Apartness is symmetric

abstract
  symmetric-apart-ℂ :
    {l1 l2 : Level} (z :  l1) (w :  l2)  apart-ℂ z w  apart-ℂ w z
  symmetric-apart-ℂ (a , b) (c , d) =
    map-disjunction symmetric-apart-ℝ symmetric-apart-ℝ

Apartness is cotransitive

abstract
  cotransitive-apart-ℂ :
    {l1 l2 l3 : Level} (x :  l1) (y :  l2) (z :  l3) 
    apart-ℂ x y  disjunction-type (apart-ℂ x z) (apart-ℂ z y)
  cotransitive-apart-ℂ x@(a , b) y@(c , d) z@(e , f) =
    elim-disjunction
      ( (apart-prop-ℂ x z)  (apart-prop-ℂ z y))
      ( map-disjunction inl-disjunction inl-disjunction 
        cotransitive-apart-ℝ a c e)
      ( map-disjunction inr-disjunction inr-disjunction 
        cotransitive-apart-ℝ b d f)

Apartness on the complex numbers is a large apartness relation

large-apartness-relation-ℂ : Large-Apartness-Relation _⊔_ 
apart-prop-Large-Apartness-Relation large-apartness-relation-ℂ =
  apart-prop-ℂ
antirefl-Large-Apartness-Relation large-apartness-relation-ℂ =
  antireflexive-apart-ℂ
symmetric-Large-Apartness-Relation large-apartness-relation-ℂ =
  symmetric-apart-ℂ
cotransitive-Large-Apartness-Relation large-apartness-relation-ℂ =
  cotransitive-apart-ℂ

Recent changes