Full subprecategories

Content created by Fredrik Bakke and Egbert Rijke.

Created on 2023-10-20.
Last modified on 2024-03-11.

module category-theory.full-subprecategories where
Imports
open import category-theory.categories
open import category-theory.composition-operations-on-binary-families-of-sets
open import category-theory.embeddings-precategories
open import category-theory.fully-faithful-functors-precategories
open import category-theory.functors-precategories
open import category-theory.isomorphisms-in-categories
open import category-theory.isomorphisms-in-precategories
open import category-theory.maps-precategories
open import category-theory.precategories

open import foundation.dependent-pair-types
open import foundation.embeddings
open import foundation.equivalences
open import foundation.function-types
open import foundation.fundamental-theorem-of-identity-types
open import foundation.identity-types
open import foundation.propositions
open import foundation.sets
open import foundation.strictly-involutive-identity-types
open import foundation.subtype-identity-principle
open import foundation.subtypes
open import foundation.universe-levels

Idea

A full subprecategory of a precategory C consists of a subtype P₀ of the objects of C.

Alternatively, we say that a subprecategory is full if for every two objects X and Y in the subprecategory, the subtype of morphisms from X to Y in the subprecategory is full.

Definitions

Full subprecategories

Full-Subprecategory :
  {l1 l2 : Level} (l3 : Level) (C : Precategory l1 l2)  UU (l1  lsuc l3)
Full-Subprecategory l3 C = subtype l3 (obj-Precategory C)

module _
  {l1 l2 l3 : Level}
  (C : Precategory l1 l2)
  (P : Full-Subprecategory l3 C)
  where

  subtype-obj-Full-Subprecategory : subtype l3 (obj-Precategory C)
  subtype-obj-Full-Subprecategory = P

  obj-Full-Subprecategory : UU (l1  l3)
  obj-Full-Subprecategory = type-subtype subtype-obj-Full-Subprecategory

  inclusion-obj-Full-Subprecategory :
    obj-Full-Subprecategory  obj-Precategory C
  inclusion-obj-Full-Subprecategory =
    inclusion-subtype subtype-obj-Full-Subprecategory

  is-in-obj-Full-Subprecategory : (x : obj-Precategory C)  UU l3
  is-in-obj-Full-Subprecategory = is-in-subtype subtype-obj-Full-Subprecategory

  is-prop-is-in-obj-Full-Subprecategory :
    (x : obj-Precategory C)  is-prop (is-in-obj-Full-Subprecategory x)
  is-prop-is-in-obj-Full-Subprecategory =
    is-prop-is-in-subtype subtype-obj-Full-Subprecategory

  is-in-obj-inclusion-obj-Full-Subprecategory :
    (x : obj-Full-Subprecategory) 
    is-in-obj-Full-Subprecategory (inclusion-obj-Full-Subprecategory x)
  is-in-obj-inclusion-obj-Full-Subprecategory =
    is-in-subtype-inclusion-subtype subtype-obj-Full-Subprecategory

The underlying precategory of a full subprecategory

module _
  {l1 l2 l3 : Level}
  (C : Precategory l1 l2)
  (P : Full-Subprecategory l3 C)
  where

  hom-set-Full-Subprecategory : (x y : obj-Full-Subprecategory C P)  Set l2
  hom-set-Full-Subprecategory x y =
    hom-set-Precategory C
      ( inclusion-obj-Full-Subprecategory C P x)
      ( inclusion-obj-Full-Subprecategory C P y)

  hom-Full-Subprecategory : (x y : obj-Full-Subprecategory C P)  UU l2
  hom-Full-Subprecategory x y = type-Set (hom-set-Full-Subprecategory x y)

  is-set-hom-Full-Subprecategory :
    (x y : obj-Full-Subprecategory C P)  is-set (hom-Full-Subprecategory x y)
  is-set-hom-Full-Subprecategory x y =
    is-set-type-Set (hom-set-Full-Subprecategory x y)

  id-hom-Full-Subprecategory :
    {x : obj-Full-Subprecategory C P}  hom-Full-Subprecategory x x
  id-hom-Full-Subprecategory = id-hom-Precategory C

  comp-hom-Full-Subprecategory :
    {x y z : obj-Full-Subprecategory C P} 
    hom-Full-Subprecategory y z 
    hom-Full-Subprecategory x y 
    hom-Full-Subprecategory x z
  comp-hom-Full-Subprecategory = comp-hom-Precategory C

  involutive-eq-associative-comp-hom-Full-Subprecategory :
    {x y z w : obj-Full-Subprecategory C P}
    (h : hom-Full-Subprecategory z w)
    (g : hom-Full-Subprecategory y z)
    (f : hom-Full-Subprecategory x y) 
    comp-hom-Full-Subprecategory {x} {y} {w}
      ( comp-hom-Full-Subprecategory {y} {z} {w} h g)
      ( f) =ⁱ
    comp-hom-Full-Subprecategory {x} {z} {w}
      ( h)
      ( comp-hom-Full-Subprecategory {x} {y} {z} g f)
  involutive-eq-associative-comp-hom-Full-Subprecategory =
    involutive-eq-associative-comp-hom-Precategory C

  associative-comp-hom-Full-Subprecategory :
    {x y z w : obj-Full-Subprecategory C P}
    (h : hom-Full-Subprecategory z w)
    (g : hom-Full-Subprecategory y z)
    (f : hom-Full-Subprecategory x y) 
    comp-hom-Full-Subprecategory {x} {y} {w}
      ( comp-hom-Full-Subprecategory {y} {z} {w} h g)
      ( f) 
    comp-hom-Full-Subprecategory {x} {z} {w}
      ( h)
      ( comp-hom-Full-Subprecategory {x} {y} {z} g f)
  associative-comp-hom-Full-Subprecategory =
    associative-comp-hom-Precategory C

  left-unit-law-comp-hom-Full-Subprecategory :
    {x y : obj-Full-Subprecategory C P}
    (f : hom-Full-Subprecategory x y) 
    comp-hom-Full-Subprecategory {x} {y} {y}
      ( id-hom-Full-Subprecategory {y})
      ( f) 
    f
  left-unit-law-comp-hom-Full-Subprecategory =
    left-unit-law-comp-hom-Precategory C

  right-unit-law-comp-hom-Full-Subprecategory :
    {x y : obj-Full-Subprecategory C P}
    (f : hom-Full-Subprecategory x y) 
    comp-hom-Full-Subprecategory {x} {x} {y}
      ( f)
      ( id-hom-Full-Subprecategory {x}) 
    f
  right-unit-law-comp-hom-Full-Subprecategory =
    right-unit-law-comp-hom-Precategory C

  associative-composition-operation-Full-Subprecategory :
    associative-composition-operation-binary-family-Set
      hom-set-Full-Subprecategory
  pr1 associative-composition-operation-Full-Subprecategory {x} {y} {z} =
    comp-hom-Full-Subprecategory {x} {y} {z}
  pr2
    associative-composition-operation-Full-Subprecategory
    { x} {y} {z} {w} h g f =
    involutive-eq-associative-comp-hom-Full-Subprecategory {x} {y} {z} {w} h g f

  is-unital-composition-operation-Full-Subprecategory :
    is-unital-composition-operation-binary-family-Set
      ( hom-set-Full-Subprecategory)
      ( λ {x} {y} {z}  comp-hom-Full-Subprecategory {x} {y} {z})
  pr1 is-unital-composition-operation-Full-Subprecategory x =
    id-hom-Full-Subprecategory {x}
  pr1 (pr2 is-unital-composition-operation-Full-Subprecategory) {x} {y} =
    left-unit-law-comp-hom-Full-Subprecategory {x} {y}
  pr2 (pr2 is-unital-composition-operation-Full-Subprecategory) {x} {y} =
    right-unit-law-comp-hom-Full-Subprecategory {x} {y}

  precategory-Full-Subprecategory : Precategory (l1  l3) l2
  pr1 precategory-Full-Subprecategory = obj-Full-Subprecategory C P
  pr1 (pr2 precategory-Full-Subprecategory) = hom-set-Full-Subprecategory
  pr1 (pr2 (pr2 precategory-Full-Subprecategory)) =
    associative-composition-operation-Full-Subprecategory
  pr2 (pr2 (pr2 precategory-Full-Subprecategory)) =
    is-unital-composition-operation-Full-Subprecategory

Isomorphisms in full subprecategories

module _
  {l1 l2 l3 : Level}
  (C : Precategory l1 l2)
  (P : Full-Subprecategory l3 C)
  where

  iso-Full-Subprecategory :
    (X Y : obj-Full-Subprecategory C P)  UU l2
  iso-Full-Subprecategory X Y =
    iso-Precategory C (inclusion-subtype P X) (inclusion-subtype P Y)

  iso-eq-Full-Subprecategory :
    (X Y : obj-Full-Subprecategory C P)  X  Y  iso-Full-Subprecategory X Y
  iso-eq-Full-Subprecategory =
    iso-eq-Precategory (precategory-Full-Subprecategory C P)

The inclusion functor of a full subprecategory

module _
  {l1 l2 l3 : Level}
  (C : Precategory l1 l2)
  (P : Full-Subprecategory l3 C)
  where

  inclusion-map-Full-Subprecategory :
    map-Precategory (precategory-Full-Subprecategory C P) C
  pr1 inclusion-map-Full-Subprecategory = inclusion-obj-Full-Subprecategory C P
  pr2 inclusion-map-Full-Subprecategory = id

  is-functor-inclusion-Full-Subprecategory :
    is-functor-map-Precategory
      ( precategory-Full-Subprecategory C P)
      ( C)
      ( inclusion-map-Full-Subprecategory)
  pr1 is-functor-inclusion-Full-Subprecategory g f = refl
  pr2 is-functor-inclusion-Full-Subprecategory x = refl

  inclusion-Full-Subprecategory :
    functor-Precategory (precategory-Full-Subprecategory C P) C
  pr1 inclusion-Full-Subprecategory =
    inclusion-obj-Full-Subprecategory C P
  pr1 (pr2 inclusion-Full-Subprecategory) = id
  pr2 (pr2 inclusion-Full-Subprecategory) =
    is-functor-inclusion-Full-Subprecategory

Properties

A full subprecategory of a category is a category

module _
  {l1 l2 l3 : Level}
  (C : Precategory l1 l2)
  (P : Full-Subprecategory l3 C)
  where

  is-category-precategory-is-category-Full-Subprecategory :
    is-category-Precategory C 
    is-category-Precategory (precategory-Full-Subprecategory C P)
  is-category-precategory-is-category-Full-Subprecategory is-category-C X =
    fundamental-theorem-id
      ( is-torsorial-Eq-subtype
        ( is-torsorial-iso-Category (C , is-category-C) (inclusion-subtype P X))
        ( is-prop-is-in-subtype P)
        ( inclusion-subtype P X)
        ( id-iso-Precategory C)
        ( is-in-subtype-inclusion-subtype P X))
      ( iso-eq-Full-Subprecategory C P X)

The inclusion functor is an embedding

module _
  {l1 l2 l3 : Level}
  (C : Precategory l1 l2)
  (P : Full-Subprecategory l3 C)
  where

  is-fully-faithful-inclusion-Full-Subprecategory :
    is-fully-faithful-functor-Precategory
      ( precategory-Full-Subprecategory C P)
      ( C)
      ( inclusion-Full-Subprecategory C P)
  is-fully-faithful-inclusion-Full-Subprecategory x y = is-equiv-id

  is-emb-obj-inclusion-Full-Subprecategory :
    is-emb
      ( obj-functor-Precategory
        ( precategory-Full-Subprecategory C P)
        ( C)
        ( inclusion-Full-Subprecategory C P))
  is-emb-obj-inclusion-Full-Subprecategory =
    is-emb-inclusion-subtype (subtype-obj-Full-Subprecategory C P)

  is-embedding-inclusion-Full-Subprecategory :
    is-embedding-functor-Precategory
      ( precategory-Full-Subprecategory C P)
      ( C)
      ( inclusion-Full-Subprecategory C P)
  pr1 is-embedding-inclusion-Full-Subprecategory =
    is-emb-obj-inclusion-Full-Subprecategory
  pr2 is-embedding-inclusion-Full-Subprecategory =
    is-fully-faithful-inclusion-Full-Subprecategory

  embedding-Full-Subprecategory :
    embedding-Precategory
      ( precategory-Full-Subprecategory C P)
      ( C)
  pr1 embedding-Full-Subprecategory = inclusion-Full-Subprecategory C P
  pr2 embedding-Full-Subprecategory = is-embedding-inclusion-Full-Subprecategory

See also

Recent changes