The ratio test for series in the real numbers

Content created by Louis Wasserman.

Created on 2025-12-30.
Last modified on 2025-12-30.

module analysis.ratio-test-series-real-numbers where
Imports
open import analysis.absolute-convergence-series-real-numbers
open import analysis.comparison-test-series-real-numbers
open import analysis.convergent-series-real-numbers
open import analysis.series-real-numbers

open import elementary-number-theory.inequality-natural-numbers
open import elementary-number-theory.natural-numbers

open import foundation.cartesian-product-types
open import foundation.conjunction
open import foundation.dependent-pair-types
open import foundation.existential-quantification
open import foundation.identity-types
open import foundation.propositional-truncations
open import foundation.propositions
open import foundation.transport-along-identifications
open import foundation.universe-levels

open import order-theory.large-posets

open import real-numbers.absolute-value-real-numbers
open import real-numbers.geometric-sequences-real-numbers
open import real-numbers.inequality-real-numbers
open import real-numbers.multiplication-nonnegative-real-numbers
open import real-numbers.multiplication-real-numbers
open import real-numbers.nonnegative-real-numbers
open import real-numbers.powers-real-numbers
open import real-numbers.rational-real-numbers
open import real-numbers.strict-inequality-nonnegative-real-numbers
open import real-numbers.strict-inequality-real-numbers

Idea

To prove that a series ∑ aₙ of real numbers converges, it is sufficient to show that there exists a nonnegative real number r less than 1 such that for all n, |aₙ₊₁| ≤ r|aₙ|. This condition is known as the ratio test for series in the real numbers.

Definition

module _
  {l : Level}
  (σ : series-ℝ l)
  where

  ratio-test-prop-series-ℝ : Prop (lsuc l)
  ratio-test-prop-series-ℝ =
     ( ℝ⁰⁺ l)
      ( λ r 
        le-prop-ℝ⁰⁺ r one-ℝ⁰⁺ 
        Π-Prop
          ( )
          ( λ n 
            ( leq-prop-ℝ
              ( abs-ℝ (term-series-ℝ σ (succ-ℕ n)))
              ( real-ℝ⁰⁺ r *ℝ abs-ℝ (term-series-ℝ σ n)))))

  ratio-test-series-ℝ : UU (lsuc l)
  ratio-test-series-ℝ = type-Prop ratio-test-prop-series-ℝ

Properties

The ratio test implies convergence

module _
  {l : Level}
  (σ : series-ℝ l)
  where

  abstract
    is-convergent-ratio-test-series-ℝ :
      ratio-test-series-ℝ σ  is-convergent-series-ℝ σ
    is-convergent-ratio-test-series-ℝ H =
      let
        open inequality-reasoning-Large-Poset ℝ-Large-Poset
        open do-syntax-trunc-Prop (is-convergent-prop-series-ℝ σ)
      in do
        (r⁰⁺@(r , 0≤r) , r<1 , K)  H
        let |σ₀| = abs-ℝ (term-series-ℝ σ 0)
        is-convergent-is-absolutely-convergent-series-ℝ
          ( σ)
          ( is-convergent-is-nonnegative-is-bounded-by-convergent-series-ℝ
            ( map-abs-series-ℝ σ)
            ( convergent-standard-geometric-series-ℝ
              ( |σ₀|)
              ( r)
              ( inv-tr  x  le-ℝ x one-ℝ) (abs-real-ℝ⁰⁺ r⁰⁺) r<1))
            ( λ _  is-nonnegative-abs-ℝ _)
            ( ind-ℕ
              ( refl-leq-ℝ _)
              ( λ n |σₙ|≤arⁿ 
                chain-of-inequalities
                  abs-ℝ (term-series-ℝ σ (succ-ℕ n))
                   r *ℝ abs-ℝ (term-series-ℝ σ n)
                    by K n
                   r *ℝ seq-standard-geometric-sequence-ℝ |σ₀| r n
                    by preserves-leq-left-mul-ℝ⁰⁺ r⁰⁺ |σₙ|≤arⁿ
                   r *ℝ (|σ₀| *ℝ power-ℝ n r)
                    by
                      leq-eq-ℝ
                        ( ap-mul-ℝ
                          ( refl)
                          ( compute-standard-geometric-sequence-ℝ |σ₀| r n))
                   |σ₀| *ℝ (r *ℝ power-ℝ n r)
                    by leq-eq-ℝ (left-swap-mul-ℝ _ _ _)
                   |σ₀| *ℝ power-ℝ (succ-ℕ n) r
                    by leq-eq-ℝ (ap-mul-ℝ refl (inv (power-succ-ℝ' n r)))
                   seq-standard-geometric-sequence-ℝ |σ₀| r (succ-ℕ n)
                    by
                      leq-eq-ℝ
                        ( inv
                          ( compute-standard-geometric-sequence-ℝ
                            ( |σ₀|)
                            ( r)
                            ( succ-ℕ n))))))

See also

Recent changes