The ratio test for series in the real numbers
Content created by Louis Wasserman.
Created on 2025-12-30.
Last modified on 2025-12-30.
module analysis.ratio-test-series-real-numbers where
Imports
open import analysis.absolute-convergence-series-real-numbers open import analysis.comparison-test-series-real-numbers open import analysis.convergent-series-real-numbers open import analysis.series-real-numbers open import elementary-number-theory.inequality-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.cartesian-product-types open import foundation.conjunction open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.identity-types open import foundation.propositional-truncations open import foundation.propositions open import foundation.transport-along-identifications open import foundation.universe-levels open import order-theory.large-posets open import real-numbers.absolute-value-real-numbers open import real-numbers.geometric-sequences-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.multiplication-nonnegative-real-numbers open import real-numbers.multiplication-real-numbers open import real-numbers.nonnegative-real-numbers open import real-numbers.powers-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.strict-inequality-nonnegative-real-numbers open import real-numbers.strict-inequality-real-numbers
Idea
To prove that a series ∑ aₙ of
real numbers
converges, it is sufficient to
show that there exists a
nonnegative real number r
less than 1 such that for all
n, |aₙ₊₁| ≤ r|aₙ|. This condition is known as the
ratio test¶
for series in the real numbers.
Definition
module _ {l : Level} (σ : series-ℝ l) where ratio-test-prop-series-ℝ : Prop (lsuc l) ratio-test-prop-series-ℝ = ∃ ( ℝ⁰⁺ l) ( λ r → le-prop-ℝ⁰⁺ r one-ℝ⁰⁺ ∧ Π-Prop ( ℕ) ( λ n → ( leq-prop-ℝ ( abs-ℝ (term-series-ℝ σ (succ-ℕ n))) ( real-ℝ⁰⁺ r *ℝ abs-ℝ (term-series-ℝ σ n))))) ratio-test-series-ℝ : UU (lsuc l) ratio-test-series-ℝ = type-Prop ratio-test-prop-series-ℝ
Properties
The ratio test implies convergence
module _ {l : Level} (σ : series-ℝ l) where abstract is-convergent-ratio-test-series-ℝ : ratio-test-series-ℝ σ → is-convergent-series-ℝ σ is-convergent-ratio-test-series-ℝ H = let open inequality-reasoning-Large-Poset ℝ-Large-Poset open do-syntax-trunc-Prop (is-convergent-prop-series-ℝ σ) in do (r⁰⁺@(r , 0≤r) , r<1 , K) ← H let |σ₀| = abs-ℝ (term-series-ℝ σ 0) is-convergent-is-absolutely-convergent-series-ℝ ( σ) ( is-convergent-is-nonnegative-is-bounded-by-convergent-series-ℝ ( map-abs-series-ℝ σ) ( convergent-standard-geometric-series-ℝ ( |σ₀|) ( r) ( inv-tr (λ x → le-ℝ x one-ℝ) (abs-real-ℝ⁰⁺ r⁰⁺) r<1)) ( λ _ → is-nonnegative-abs-ℝ _) ( ind-ℕ ( refl-leq-ℝ _) ( λ n |σₙ|≤arⁿ → chain-of-inequalities abs-ℝ (term-series-ℝ σ (succ-ℕ n)) ≤ r *ℝ abs-ℝ (term-series-ℝ σ n) by K n ≤ r *ℝ seq-standard-geometric-sequence-ℝ |σ₀| r n by preserves-leq-left-mul-ℝ⁰⁺ r⁰⁺ |σₙ|≤arⁿ ≤ r *ℝ (|σ₀| *ℝ power-ℝ n r) by leq-eq-ℝ ( ap-mul-ℝ ( refl) ( compute-standard-geometric-sequence-ℝ |σ₀| r n)) ≤ |σ₀| *ℝ (r *ℝ power-ℝ n r) by leq-eq-ℝ (left-swap-mul-ℝ _ _ _) ≤ |σ₀| *ℝ power-ℝ (succ-ℕ n) r by leq-eq-ℝ (ap-mul-ℝ refl (inv (power-succ-ℝ' n r))) ≤ seq-standard-geometric-sequence-ℝ |σ₀| r (succ-ℕ n) by leq-eq-ℝ ( inv ( compute-standard-geometric-sequence-ℝ ( |σ₀|) ( r) ( succ-ℕ n))))))
See also
External links
- Ratio test at Wikidata
- Ratio test on Wikipedia
Recent changes
- 2025-12-30. Louis Wasserman. The ratio test for convergence in real Banach spaces (#1716).