Fibers of maps
Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.
Created on 2022-02-07.
Last modified on 2023-09-11.
module foundation-core.fibers-of-maps where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.universe-levels open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.transport-along-identifications
Idea
Given a map f : A → B
and a point b : B
, the fiber of f
at b
is the
preimage of f
at b
. In other words, it consists of the elements a : A
equipped with an identification Id (f a) b
.
Definition
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (b : B) where fiber : UU (l1 ⊔ l2) fiber = Σ A (λ x → f x = b) fiber' : UU (l1 ⊔ l2) fiber' = Σ A (λ x → b = f x)
Properties
Characterization of the identity types of the fibers of a map
The case of fiber
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (b : B) where Eq-fiber : fiber f b → fiber f b → UU (l1 ⊔ l2) Eq-fiber s t = Σ (pr1 s = pr1 t) (λ α → ((ap f α) ∙ (pr2 t)) = (pr2 s)) refl-Eq-fiber : (s : fiber f b) → Eq-fiber s s pr1 (refl-Eq-fiber s) = refl pr2 (refl-Eq-fiber s) = refl Eq-eq-fiber : {s t : fiber f b} → s = t → Eq-fiber s t Eq-eq-fiber {s} refl = refl-Eq-fiber s eq-Eq-fiber-uncurry : {s t : fiber f b} → Eq-fiber s t → s = t eq-Eq-fiber-uncurry (refl , refl) = refl eq-Eq-fiber : {s t : fiber f b} (α : pr1 s = pr1 t) → ((ap f α) ∙ (pr2 t)) = pr2 s → s = t eq-Eq-fiber α β = eq-Eq-fiber-uncurry (α , β) is-section-eq-Eq-fiber : {s t : fiber f b} → (Eq-eq-fiber {s} {t} ∘ eq-Eq-fiber-uncurry {s} {t}) ~ id is-section-eq-Eq-fiber (refl , refl) = refl is-retraction-eq-Eq-fiber : {s t : fiber f b} → (eq-Eq-fiber-uncurry {s} {t} ∘ Eq-eq-fiber {s} {t}) ~ id is-retraction-eq-Eq-fiber refl = refl abstract is-equiv-Eq-eq-fiber : {s t : fiber f b} → is-equiv (Eq-eq-fiber {s} {t}) is-equiv-Eq-eq-fiber = is-equiv-is-invertible eq-Eq-fiber-uncurry is-section-eq-Eq-fiber is-retraction-eq-Eq-fiber equiv-Eq-eq-fiber : {s t : fiber f b} → (s = t) ≃ Eq-fiber s t pr1 equiv-Eq-eq-fiber = Eq-eq-fiber pr2 equiv-Eq-eq-fiber = is-equiv-Eq-eq-fiber abstract is-equiv-eq-Eq-fiber : {s t : fiber f b} → is-equiv (eq-Eq-fiber-uncurry {s} {t}) is-equiv-eq-Eq-fiber = is-equiv-is-invertible Eq-eq-fiber is-retraction-eq-Eq-fiber is-section-eq-Eq-fiber equiv-eq-Eq-fiber : {s t : fiber f b} → Eq-fiber s t ≃ (s = t) pr1 equiv-eq-Eq-fiber = eq-Eq-fiber-uncurry pr2 equiv-eq-Eq-fiber = is-equiv-eq-Eq-fiber
The case of fiber'
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (b : B) where Eq-fiber' : fiber' f b → fiber' f b → UU (l1 ⊔ l2) Eq-fiber' s t = Σ (pr1 s = pr1 t) (λ α → (pr2 t = ((pr2 s) ∙ (ap f α)))) refl-Eq-fiber' : (s : fiber' f b) → Eq-fiber' s s pr1 (refl-Eq-fiber' s) = refl pr2 (refl-Eq-fiber' s) = inv right-unit Eq-eq-fiber' : {s t : fiber' f b} → s = t → Eq-fiber' s t Eq-eq-fiber' {s} refl = refl-Eq-fiber' s eq-Eq-fiber-uncurry' : {s t : fiber' f b} → Eq-fiber' s t → s = t eq-Eq-fiber-uncurry' {x , p} (refl , refl) = ap (pair x) (inv right-unit) eq-Eq-fiber' : {s t : fiber' f b} (α : pr1 s = pr1 t) → (pr2 t) = ((pr2 s) ∙ (ap f α)) → s = t eq-Eq-fiber' α β = eq-Eq-fiber-uncurry' (α , β) is-section-eq-Eq-fiber' : {s t : fiber' f b} → (Eq-eq-fiber' {s} {t} ∘ eq-Eq-fiber-uncurry' {s} {t}) ~ id is-section-eq-Eq-fiber' {x , refl} (refl , refl) = refl is-retraction-eq-Eq-fiber' : {s t : fiber' f b} → (eq-Eq-fiber-uncurry' {s} {t} ∘ Eq-eq-fiber' {s} {t}) ~ id is-retraction-eq-Eq-fiber' {x , refl} refl = refl abstract is-equiv-Eq-eq-fiber' : {s t : fiber' f b} → is-equiv (Eq-eq-fiber' {s} {t}) is-equiv-Eq-eq-fiber' = is-equiv-is-invertible eq-Eq-fiber-uncurry' is-section-eq-Eq-fiber' is-retraction-eq-Eq-fiber' equiv-Eq-eq-fiber' : {s t : fiber' f b} → (s = t) ≃ Eq-fiber' s t pr1 equiv-Eq-eq-fiber' = Eq-eq-fiber' pr2 equiv-Eq-eq-fiber' = is-equiv-Eq-eq-fiber' abstract is-equiv-eq-Eq-fiber' : {s t : fiber' f b} → is-equiv (eq-Eq-fiber-uncurry' {s} {t}) is-equiv-eq-Eq-fiber' = is-equiv-is-invertible Eq-eq-fiber' is-retraction-eq-Eq-fiber' is-section-eq-Eq-fiber' equiv-eq-Eq-fiber' : {s t : fiber' f b} → Eq-fiber' s t ≃ (s = t) pr1 equiv-eq-Eq-fiber' = eq-Eq-fiber-uncurry' pr2 equiv-eq-Eq-fiber' = is-equiv-eq-Eq-fiber'
fiber f y
and fiber' f y
are equivalent
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (y : B) where map-equiv-fiber : fiber f y → fiber' f y pr1 (map-equiv-fiber (x , refl)) = x pr2 (map-equiv-fiber (x , refl)) = refl map-inv-equiv-fiber : fiber' f y → fiber f y pr1 (map-inv-equiv-fiber (x , refl)) = x pr2 (map-inv-equiv-fiber (x , refl)) = refl is-section-map-inv-equiv-fiber : (map-equiv-fiber ∘ map-inv-equiv-fiber) ~ id is-section-map-inv-equiv-fiber (x , refl) = refl is-retraction-map-inv-equiv-fiber : (map-inv-equiv-fiber ∘ map-equiv-fiber) ~ id is-retraction-map-inv-equiv-fiber (x , refl) = refl is-equiv-map-equiv-fiber : is-equiv map-equiv-fiber is-equiv-map-equiv-fiber = is-equiv-is-invertible map-inv-equiv-fiber is-section-map-inv-equiv-fiber is-retraction-map-inv-equiv-fiber equiv-fiber : fiber f y ≃ fiber' f y pr1 equiv-fiber = map-equiv-fiber pr2 equiv-fiber = is-equiv-map-equiv-fiber
Computing the fibers of a projection map
module _ {l1 l2 : Level} {A : UU l1} (B : A → UU l2) (a : A) where map-fiber-pr1 : fiber (pr1 {B = B}) a → B a map-fiber-pr1 ((x , y) , p) = tr B p y map-inv-fiber-pr1 : B a → fiber (pr1 {B = B}) a pr1 (pr1 (map-inv-fiber-pr1 b)) = a pr2 (pr1 (map-inv-fiber-pr1 b)) = b pr2 (map-inv-fiber-pr1 b) = refl is-section-map-inv-fiber-pr1 : (map-inv-fiber-pr1 ∘ map-fiber-pr1) ~ id is-section-map-inv-fiber-pr1 ((.a , y) , refl) = refl is-retraction-map-inv-fiber-pr1 : (map-fiber-pr1 ∘ map-inv-fiber-pr1) ~ id is-retraction-map-inv-fiber-pr1 b = refl abstract is-equiv-map-fiber-pr1 : is-equiv map-fiber-pr1 is-equiv-map-fiber-pr1 = is-equiv-is-invertible map-inv-fiber-pr1 is-retraction-map-inv-fiber-pr1 is-section-map-inv-fiber-pr1 equiv-fiber-pr1 : fiber (pr1 {B = B}) a ≃ B a pr1 equiv-fiber-pr1 = map-fiber-pr1 pr2 equiv-fiber-pr1 = is-equiv-map-fiber-pr1 abstract is-equiv-map-inv-fiber-pr1 : is-equiv map-inv-fiber-pr1 is-equiv-map-inv-fiber-pr1 = is-equiv-is-invertible map-fiber-pr1 is-section-map-inv-fiber-pr1 is-retraction-map-inv-fiber-pr1 inv-equiv-fiber-pr1 : B a ≃ fiber (pr1 {B = B}) a pr1 inv-equiv-fiber-pr1 = map-inv-fiber-pr1 pr2 inv-equiv-fiber-pr1 = is-equiv-map-inv-fiber-pr1
The total space of fibers
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) where map-equiv-total-fiber : (Σ B (fiber f)) → A map-equiv-total-fiber t = pr1 (pr2 t) triangle-map-equiv-total-fiber : pr1 ~ (f ∘ map-equiv-total-fiber) triangle-map-equiv-total-fiber t = inv (pr2 (pr2 t)) map-inv-equiv-total-fiber : A → Σ B (fiber f) pr1 (map-inv-equiv-total-fiber x) = f x pr1 (pr2 (map-inv-equiv-total-fiber x)) = x pr2 (pr2 (map-inv-equiv-total-fiber x)) = refl is-retraction-map-inv-equiv-total-fiber : (map-inv-equiv-total-fiber ∘ map-equiv-total-fiber) ~ id is-retraction-map-inv-equiv-total-fiber (.(f x) , x , refl) = refl is-section-map-inv-equiv-total-fiber : (map-equiv-total-fiber ∘ map-inv-equiv-total-fiber) ~ id is-section-map-inv-equiv-total-fiber x = refl abstract is-equiv-map-equiv-total-fiber : is-equiv map-equiv-total-fiber is-equiv-map-equiv-total-fiber = is-equiv-is-invertible map-inv-equiv-total-fiber is-section-map-inv-equiv-total-fiber is-retraction-map-inv-equiv-total-fiber is-equiv-map-inv-equiv-total-fiber : is-equiv map-inv-equiv-total-fiber is-equiv-map-inv-equiv-total-fiber = is-equiv-is-invertible map-equiv-total-fiber is-retraction-map-inv-equiv-total-fiber is-section-map-inv-equiv-total-fiber equiv-total-fiber : Σ B (fiber f) ≃ A pr1 equiv-total-fiber = map-equiv-total-fiber pr2 equiv-total-fiber = is-equiv-map-equiv-total-fiber inv-equiv-total-fiber : A ≃ Σ B (fiber f) pr1 inv-equiv-total-fiber = map-inv-equiv-total-fiber pr2 inv-equiv-total-fiber = is-equiv-map-inv-equiv-total-fiber
Fibers of compositions
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (g : B → X) (h : A → B) (x : X) where map-compute-fiber-comp : fiber (g ∘ h) x → Σ (fiber g x) (λ t → fiber h (pr1 t)) pr1 (pr1 (map-compute-fiber-comp (a , p))) = h a pr2 (pr1 (map-compute-fiber-comp (a , p))) = p pr1 (pr2 (map-compute-fiber-comp (a , p))) = a pr2 (pr2 (map-compute-fiber-comp (a , p))) = refl inv-map-compute-fiber-comp : Σ (fiber g x) (λ t → fiber h (pr1 t)) → fiber (g ∘ h) x pr1 (inv-map-compute-fiber-comp t) = pr1 (pr2 t) pr2 (inv-map-compute-fiber-comp t) = ap g (pr2 (pr2 t)) ∙ pr2 (pr1 t) is-section-inv-map-compute-fiber-comp : (map-compute-fiber-comp ∘ inv-map-compute-fiber-comp) ~ id is-section-inv-map-compute-fiber-comp ((.(h a) , refl) , (a , refl)) = refl is-retraction-inv-map-compute-fiber-comp : (inv-map-compute-fiber-comp ∘ map-compute-fiber-comp) ~ id is-retraction-inv-map-compute-fiber-comp (a , refl) = refl abstract is-equiv-map-compute-fiber-comp : is-equiv map-compute-fiber-comp is-equiv-map-compute-fiber-comp = is-equiv-is-invertible ( inv-map-compute-fiber-comp) ( is-section-inv-map-compute-fiber-comp) ( is-retraction-inv-map-compute-fiber-comp) equiv-compute-fiber-comp : fiber (g ∘ h) x ≃ Σ (fiber g x) (λ t → fiber h (pr1 t)) pr1 equiv-compute-fiber-comp = map-compute-fiber-comp pr2 equiv-compute-fiber-comp = is-equiv-map-compute-fiber-comp abstract is-equiv-inv-map-compute-fiber-comp : is-equiv inv-map-compute-fiber-comp is-equiv-inv-map-compute-fiber-comp = is-equiv-is-invertible ( map-compute-fiber-comp) ( is-retraction-inv-map-compute-fiber-comp) ( is-section-inv-map-compute-fiber-comp) inv-equiv-compute-fiber-comp : Σ (fiber g x) (λ t → fiber h (pr1 t)) ≃ fiber (g ∘ h) x pr1 inv-equiv-compute-fiber-comp = inv-map-compute-fiber-comp pr2 inv-equiv-compute-fiber-comp = is-equiv-inv-map-compute-fiber-comp
When a product is taken over all fibers of a map, then we can equivalently take the product over the domain of that map
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) (C : (y : B) (z : fiber f y) → UU l3) where map-reduce-Π-fiber : ((y : B) (z : fiber f y) → C y z) → ((x : A) → C (f x) (x , refl)) map-reduce-Π-fiber h x = h (f x) (x , refl) inv-map-reduce-Π-fiber : ((x : A) → C (f x) (x , refl)) → ((y : B) (z : fiber f y) → C y z) inv-map-reduce-Π-fiber h .(f x) (x , refl) = h x is-section-inv-map-reduce-Π-fiber : (map-reduce-Π-fiber ∘ inv-map-reduce-Π-fiber) ~ id is-section-inv-map-reduce-Π-fiber h = refl is-retraction-inv-map-reduce-Π-fiber' : (h : (y : B) (z : fiber f y) → C y z) (y : B) → (inv-map-reduce-Π-fiber (map-reduce-Π-fiber h) y) ~ (h y) is-retraction-inv-map-reduce-Π-fiber' h .(f z) (z , refl) = refl is-retraction-inv-map-reduce-Π-fiber : (inv-map-reduce-Π-fiber ∘ map-reduce-Π-fiber) ~ id is-retraction-inv-map-reduce-Π-fiber h = eq-htpy (eq-htpy ∘ is-retraction-inv-map-reduce-Π-fiber' h) is-equiv-map-reduce-Π-fiber : is-equiv map-reduce-Π-fiber is-equiv-map-reduce-Π-fiber = is-equiv-is-invertible ( inv-map-reduce-Π-fiber) ( is-section-inv-map-reduce-Π-fiber) ( is-retraction-inv-map-reduce-Π-fiber) reduce-Π-fiber' : ((y : B) (z : fiber f y) → C y z) ≃ ((x : A) → C (f x) (x , refl)) pr1 reduce-Π-fiber' = map-reduce-Π-fiber pr2 reduce-Π-fiber' = is-equiv-map-reduce-Π-fiber reduce-Π-fiber : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) → (C : B → UU l3) → ((y : B) → fiber f y → C y) ≃ ((x : A) → C (f x)) reduce-Π-fiber f C = reduce-Π-fiber' f (λ y z → C y)
Recent changes
- 2023-09-11. Fredrik Bakke. Transport along and action on equivalences (#706).
- 2023-09-11. Fredrik Bakke and Egbert Rijke. Some computations for different notions of equivalence (#711).
- 2023-09-06. Egbert Rijke. Rename fib to fiber (#722).
- 2023-06-15. Egbert Rijke. Replace
isretr
withis-retraction
andissec
withis-section
(#659). - 2023-06-10. Egbert Rijke. cleaning up transport and dependent identifications files (#650).