Fibers of maps
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides and Raymond Baker.
Created on 2022-02-07.
Last modified on 2025-01-07.
module foundation-core.fibers-of-maps where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.strictly-right-unital-concatenation-identifications open import foundation.universe-levels open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.postcomposition-functions open import foundation-core.retractions open import foundation-core.sections open import foundation-core.transport-along-identifications
Idea
Given a map f : A → B
and an element b : B
, the fiber of f
at b
is
the preimage of f
at b
. In other words, it consists of the elements a : A
equipped with an identification f a = b
.
Definition
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (b : B) where fiber : UU (l1 ⊔ l2) fiber = Σ A (λ x → f x = b) fiber' : UU (l1 ⊔ l2) fiber' = Σ A (λ x → b = f x) module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) {b : B} where inclusion-fiber : fiber f b → A inclusion-fiber = pr1 compute-value-inclusion-fiber : (y : fiber f b) → f (inclusion-fiber y) = b compute-value-inclusion-fiber = pr2
Properties
Characterization of the identity types of the fibers of a map
The case of fiber
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (b : B) where Eq-fiber : fiber f b → fiber f b → UU (l1 ⊔ l2) Eq-fiber s t = Σ (pr1 s = pr1 t) (λ α → ap f α ∙ pr2 t = pr2 s) refl-Eq-fiber : (s : fiber f b) → Eq-fiber s s pr1 (refl-Eq-fiber s) = refl pr2 (refl-Eq-fiber s) = refl Eq-eq-fiber : {s t : fiber f b} → s = t → Eq-fiber s t Eq-eq-fiber {s} refl = refl-Eq-fiber s eq-Eq-fiber-uncurry : {s t : fiber f b} → Eq-fiber s t → s = t eq-Eq-fiber-uncurry (refl , refl) = refl eq-Eq-fiber : {s t : fiber f b} (α : pr1 s = pr1 t) → ap f α ∙ pr2 t = pr2 s → s = t eq-Eq-fiber α β = eq-Eq-fiber-uncurry (α , β) is-section-eq-Eq-fiber : {s t : fiber f b} → is-section (Eq-eq-fiber {s} {t}) (eq-Eq-fiber-uncurry {s} {t}) is-section-eq-Eq-fiber (refl , refl) = refl is-retraction-eq-Eq-fiber : {s t : fiber f b} → is-retraction (Eq-eq-fiber {s} {t}) (eq-Eq-fiber-uncurry {s} {t}) is-retraction-eq-Eq-fiber refl = refl abstract is-equiv-Eq-eq-fiber : {s t : fiber f b} → is-equiv (Eq-eq-fiber {s} {t}) is-equiv-Eq-eq-fiber = is-equiv-is-invertible eq-Eq-fiber-uncurry is-section-eq-Eq-fiber is-retraction-eq-Eq-fiber equiv-Eq-eq-fiber : {s t : fiber f b} → (s = t) ≃ Eq-fiber s t pr1 equiv-Eq-eq-fiber = Eq-eq-fiber pr2 equiv-Eq-eq-fiber = is-equiv-Eq-eq-fiber abstract is-equiv-eq-Eq-fiber : {s t : fiber f b} → is-equiv (eq-Eq-fiber-uncurry {s} {t}) is-equiv-eq-Eq-fiber = is-equiv-is-invertible Eq-eq-fiber is-retraction-eq-Eq-fiber is-section-eq-Eq-fiber equiv-eq-Eq-fiber : {s t : fiber f b} → Eq-fiber s t ≃ (s = t) pr1 equiv-eq-Eq-fiber = eq-Eq-fiber-uncurry pr2 equiv-eq-Eq-fiber = is-equiv-eq-Eq-fiber compute-ap-inclusion-fiber-eq-Eq-fiber : {s t : fiber f b} (α : pr1 s = pr1 t) (β : ap f α ∙ pr2 t = pr2 s) → ap (inclusion-fiber f) (eq-Eq-fiber α β) = α compute-ap-inclusion-fiber-eq-Eq-fiber refl refl = refl
The case of fiber'
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (b : B) where Eq-fiber' : fiber' f b → fiber' f b → UU (l1 ⊔ l2) Eq-fiber' s t = Σ (pr1 s = pr1 t) (λ α → pr2 t = pr2 s ∙ ap f α) refl-Eq-fiber' : (s : fiber' f b) → Eq-fiber' s s pr1 (refl-Eq-fiber' s) = refl pr2 (refl-Eq-fiber' s) = inv right-unit Eq-eq-fiber' : {s t : fiber' f b} → s = t → Eq-fiber' s t Eq-eq-fiber' {s} refl = refl-Eq-fiber' s eq-Eq-fiber-uncurry' : {s t : fiber' f b} → Eq-fiber' s t → s = t eq-Eq-fiber-uncurry' {x , p} (refl , refl) = ap (pair _) (inv right-unit) eq-Eq-fiber' : {s t : fiber' f b} (α : pr1 s = pr1 t) → pr2 t = pr2 s ∙ ap f α → s = t eq-Eq-fiber' α β = eq-Eq-fiber-uncurry' (α , β) is-section-eq-Eq-fiber' : {s t : fiber' f b} → is-section (Eq-eq-fiber' {s} {t}) (eq-Eq-fiber-uncurry' {s} {t}) is-section-eq-Eq-fiber' {x , refl} (refl , refl) = refl is-retraction-eq-Eq-fiber' : {s t : fiber' f b} → is-retraction (Eq-eq-fiber' {s} {t}) (eq-Eq-fiber-uncurry' {s} {t}) is-retraction-eq-Eq-fiber' {x , refl} refl = refl abstract is-equiv-Eq-eq-fiber' : {s t : fiber' f b} → is-equiv (Eq-eq-fiber' {s} {t}) is-equiv-Eq-eq-fiber' = is-equiv-is-invertible eq-Eq-fiber-uncurry' is-section-eq-Eq-fiber' is-retraction-eq-Eq-fiber' equiv-Eq-eq-fiber' : {s t : fiber' f b} → (s = t) ≃ Eq-fiber' s t pr1 equiv-Eq-eq-fiber' = Eq-eq-fiber' pr2 equiv-Eq-eq-fiber' = is-equiv-Eq-eq-fiber' abstract is-equiv-eq-Eq-fiber' : {s t : fiber' f b} → is-equiv (eq-Eq-fiber-uncurry' {s} {t}) is-equiv-eq-Eq-fiber' = is-equiv-is-invertible Eq-eq-fiber' is-retraction-eq-Eq-fiber' is-section-eq-Eq-fiber' equiv-eq-Eq-fiber' : {s t : fiber' f b} → Eq-fiber' s t ≃ (s = t) pr1 equiv-eq-Eq-fiber' = eq-Eq-fiber-uncurry' pr2 equiv-eq-Eq-fiber' = is-equiv-eq-Eq-fiber'
fiber f y
and fiber' f y
are equivalent
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (y : B) where map-equiv-fiber : fiber f y → fiber' f y pr1 (map-equiv-fiber (x , _)) = x pr2 (map-equiv-fiber (x , p)) = inv p map-inv-equiv-fiber : fiber' f y → fiber f y pr1 (map-inv-equiv-fiber (x , _)) = x pr2 (map-inv-equiv-fiber (x , p)) = inv p is-section-map-inv-equiv-fiber : is-section map-equiv-fiber map-inv-equiv-fiber is-section-map-inv-equiv-fiber (x , refl) = refl is-retraction-map-inv-equiv-fiber : is-retraction map-equiv-fiber map-inv-equiv-fiber is-retraction-map-inv-equiv-fiber (x , refl) = refl is-equiv-map-equiv-fiber : is-equiv map-equiv-fiber is-equiv-map-equiv-fiber = is-equiv-is-invertible map-inv-equiv-fiber is-section-map-inv-equiv-fiber is-retraction-map-inv-equiv-fiber equiv-fiber : fiber f y ≃ fiber' f y pr1 equiv-fiber = map-equiv-fiber pr2 equiv-fiber = is-equiv-map-equiv-fiber
Computing the fibers of a projection map
module _ {l1 l2 : Level} {A : UU l1} (B : A → UU l2) (a : A) where map-fiber-pr1 : fiber (pr1 {B = B}) a → B a map-fiber-pr1 ((x , y) , p) = tr B p y map-inv-fiber-pr1 : B a → fiber (pr1 {B = B}) a pr1 (pr1 (map-inv-fiber-pr1 b)) = a pr2 (pr1 (map-inv-fiber-pr1 b)) = b pr2 (map-inv-fiber-pr1 b) = refl is-section-map-inv-fiber-pr1 : is-section map-fiber-pr1 map-inv-fiber-pr1 is-section-map-inv-fiber-pr1 b = refl is-retraction-map-inv-fiber-pr1 : is-retraction map-fiber-pr1 map-inv-fiber-pr1 is-retraction-map-inv-fiber-pr1 ((.a , y) , refl) = refl abstract is-equiv-map-fiber-pr1 : is-equiv map-fiber-pr1 is-equiv-map-fiber-pr1 = is-equiv-is-invertible map-inv-fiber-pr1 is-section-map-inv-fiber-pr1 is-retraction-map-inv-fiber-pr1 equiv-fiber-pr1 : fiber (pr1 {B = B}) a ≃ B a pr1 equiv-fiber-pr1 = map-fiber-pr1 pr2 equiv-fiber-pr1 = is-equiv-map-fiber-pr1 abstract is-equiv-map-inv-fiber-pr1 : is-equiv map-inv-fiber-pr1 is-equiv-map-inv-fiber-pr1 = is-equiv-is-invertible map-fiber-pr1 is-retraction-map-inv-fiber-pr1 is-section-map-inv-fiber-pr1 inv-equiv-fiber-pr1 : B a ≃ fiber (pr1 {B = B}) a pr1 inv-equiv-fiber-pr1 = map-inv-fiber-pr1 pr2 inv-equiv-fiber-pr1 = is-equiv-map-inv-fiber-pr1
The total space of fibers
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) where map-equiv-total-fiber : Σ B (fiber f) → A map-equiv-total-fiber t = pr1 (pr2 t) triangle-map-equiv-total-fiber : pr1 ~ f ∘ map-equiv-total-fiber triangle-map-equiv-total-fiber t = inv (pr2 (pr2 t)) map-inv-equiv-total-fiber : A → Σ B (fiber f) pr1 (map-inv-equiv-total-fiber x) = f x pr1 (pr2 (map-inv-equiv-total-fiber x)) = x pr2 (pr2 (map-inv-equiv-total-fiber x)) = refl is-retraction-map-inv-equiv-total-fiber : is-retraction map-equiv-total-fiber map-inv-equiv-total-fiber is-retraction-map-inv-equiv-total-fiber (.(f x) , x , refl) = refl is-section-map-inv-equiv-total-fiber : is-section map-equiv-total-fiber map-inv-equiv-total-fiber is-section-map-inv-equiv-total-fiber x = refl abstract is-equiv-map-equiv-total-fiber : is-equiv map-equiv-total-fiber is-equiv-map-equiv-total-fiber = is-equiv-is-invertible map-inv-equiv-total-fiber is-section-map-inv-equiv-total-fiber is-retraction-map-inv-equiv-total-fiber is-equiv-map-inv-equiv-total-fiber : is-equiv map-inv-equiv-total-fiber is-equiv-map-inv-equiv-total-fiber = is-equiv-is-invertible map-equiv-total-fiber is-retraction-map-inv-equiv-total-fiber is-section-map-inv-equiv-total-fiber equiv-total-fiber : Σ B (fiber f) ≃ A pr1 equiv-total-fiber = map-equiv-total-fiber pr2 equiv-total-fiber = is-equiv-map-equiv-total-fiber inv-equiv-total-fiber : A ≃ Σ B (fiber f) pr1 inv-equiv-total-fiber = map-inv-equiv-total-fiber pr2 inv-equiv-total-fiber = is-equiv-map-inv-equiv-total-fiber
Fibers of compositions
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (g : B → X) (h : A → B) (x : X) where map-compute-fiber-comp : fiber (g ∘ h) x → Σ (fiber g x) (λ t → fiber h (pr1 t)) pr1 (pr1 (map-compute-fiber-comp (a , p))) = h a pr2 (pr1 (map-compute-fiber-comp (a , p))) = p pr1 (pr2 (map-compute-fiber-comp (a , p))) = a pr2 (pr2 (map-compute-fiber-comp (a , p))) = refl map-inv-compute-fiber-comp : Σ (fiber g x) (λ t → fiber h (pr1 t)) → fiber (g ∘ h) x pr1 (map-inv-compute-fiber-comp t) = pr1 (pr2 t) pr2 (map-inv-compute-fiber-comp t) = ap g (pr2 (pr2 t)) ∙ pr2 (pr1 t) is-section-map-inv-compute-fiber-comp : is-section map-compute-fiber-comp map-inv-compute-fiber-comp is-section-map-inv-compute-fiber-comp ((.(h a) , refl) , (a , refl)) = refl is-retraction-map-inv-compute-fiber-comp : is-retraction map-compute-fiber-comp map-inv-compute-fiber-comp is-retraction-map-inv-compute-fiber-comp (a , refl) = refl abstract is-equiv-map-compute-fiber-comp : is-equiv map-compute-fiber-comp is-equiv-map-compute-fiber-comp = is-equiv-is-invertible ( map-inv-compute-fiber-comp) ( is-section-map-inv-compute-fiber-comp) ( is-retraction-map-inv-compute-fiber-comp) compute-fiber-comp : fiber (g ∘ h) x ≃ Σ (fiber g x) (λ t → fiber h (pr1 t)) pr1 compute-fiber-comp = map-compute-fiber-comp pr2 compute-fiber-comp = is-equiv-map-compute-fiber-comp abstract is-equiv-map-inv-compute-fiber-comp : is-equiv map-inv-compute-fiber-comp is-equiv-map-inv-compute-fiber-comp = is-equiv-is-invertible ( map-compute-fiber-comp) ( is-retraction-map-inv-compute-fiber-comp) ( is-section-map-inv-compute-fiber-comp) inv-compute-fiber-comp : Σ (fiber g x) (λ t → fiber h (pr1 t)) ≃ fiber (g ∘ h) x pr1 inv-compute-fiber-comp = map-inv-compute-fiber-comp pr2 inv-compute-fiber-comp = is-equiv-map-inv-compute-fiber-comp
Fibers of homotopic maps are equivalent
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} {f g : A → B} (H : g ~ f) (y : B) where map-equiv-fiber-htpy : fiber f y → fiber g y map-equiv-fiber-htpy (x , p) = x , H x ∙ᵣ p map-inv-equiv-fiber-htpy : fiber g y → fiber f y map-inv-equiv-fiber-htpy (x , p) = x , inv (H x) ∙ᵣ p is-section-map-inv-equiv-fiber-htpy : is-section map-equiv-fiber-htpy map-inv-equiv-fiber-htpy is-section-map-inv-equiv-fiber-htpy (x , refl) = eq-Eq-fiber g (g x) refl (inv (right-inv-right-strict-concat (H x))) is-retraction-map-inv-equiv-fiber-htpy : is-retraction map-equiv-fiber-htpy map-inv-equiv-fiber-htpy is-retraction-map-inv-equiv-fiber-htpy (x , refl) = eq-Eq-fiber f (f x) refl (inv (left-inv-right-strict-concat (H x))) is-equiv-map-equiv-fiber-htpy : is-equiv map-equiv-fiber-htpy is-equiv-map-equiv-fiber-htpy = is-equiv-is-invertible map-inv-equiv-fiber-htpy is-section-map-inv-equiv-fiber-htpy is-retraction-map-inv-equiv-fiber-htpy equiv-fiber-htpy : fiber f y ≃ fiber g y equiv-fiber-htpy = map-equiv-fiber-htpy , is-equiv-map-equiv-fiber-htpy
We repeat the construction for fiber'
.
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} {f g : A → B} (H : g ~ f) (y : B) where map-equiv-fiber-htpy' : fiber' f y → fiber' g y map-equiv-fiber-htpy' (x , p) = (x , p ∙ inv (H x)) map-inv-equiv-fiber-htpy' : fiber' g y → fiber' f y map-inv-equiv-fiber-htpy' (x , p) = (x , p ∙ H x) is-section-map-inv-equiv-fiber-htpy' : is-section map-equiv-fiber-htpy' map-inv-equiv-fiber-htpy' is-section-map-inv-equiv-fiber-htpy' (x , p) = ap (pair x) (is-retraction-inv-concat' (H x) p) is-retraction-map-inv-equiv-fiber-htpy' : is-retraction map-equiv-fiber-htpy' map-inv-equiv-fiber-htpy' is-retraction-map-inv-equiv-fiber-htpy' (x , p) = ap (pair x) (is-section-inv-concat' (H x) p) is-equiv-map-equiv-fiber-htpy' : is-equiv map-equiv-fiber-htpy' is-equiv-map-equiv-fiber-htpy' = is-equiv-is-invertible map-inv-equiv-fiber-htpy' is-section-map-inv-equiv-fiber-htpy' is-retraction-map-inv-equiv-fiber-htpy' equiv-fiber-htpy' : fiber' f y ≃ fiber' g y equiv-fiber-htpy' = map-equiv-fiber-htpy' , is-equiv-map-equiv-fiber-htpy'
Table of files about fibers of maps
The following table lists files that are about fibers of maps as a general concept.
Concept | File |
---|---|
Fibers of maps (foundation-core) | foundation-core.fibers-of-maps |
Fibers of maps (foundation) | foundation.fibers-of-maps |
Equality in the fibers of a map | foundation.equality-fibers-of-maps |
Functoriality of fibers of maps | foundation.functoriality-fibers-of-maps |
Fibers of pointed maps | structured-types.fibers-of-pointed-maps |
Fibers of maps of finite types | univalent-combinatorics.fibers-of-maps |
The universal property of the family of fibers of maps | foundation.universal-property-family-of-fibers-of-maps |
Recent changes
- 2025-01-07. Fredrik Bakke. Logic (#1226).
- 2024-03-02. Fredrik Bakke. Factor out standard pullbacks (#1042).
- 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).
- 2024-01-25. Fredrik Bakke. Basic properties of orthogonal maps (#979).
- 2023-12-21. Fredrik Bakke. Action on homotopies of functions (#973).