Finite sequences in groups

Content created by Louis Wasserman.

Created on 2025-09-02.
Last modified on 2025-09-02.

module linear-algebra.finite-sequences-in-groups where
Imports
open import elementary-number-theory.natural-numbers

open import foundation.identity-types
open import foundation.universe-levels

open import group-theory.function-groups
open import group-theory.groups

open import linear-algebra.finite-sequences-in-monoids

open import univalent-combinatorics.standard-finite-types

Idea

Given a group G, the type fin-sequence n G of finite sequences of length n of elements of G is a group given by componentwise addition.

We use additive terminology for vectors, as is standard in linear algebra contexts, despite using multiplicative terminology for groups.

Definitions

module _
  {l : Level} (G : Group l)
  where

  fin-sequence-type-Group :   UU l
  fin-sequence-type-Group =
    fin-sequence-type-Monoid (monoid-Group G)

  head-fin-sequence-type-Group :
    (n : )  fin-sequence-type-Group (succ-ℕ n) 
    type-Group G
  head-fin-sequence-type-Group =
    head-fin-sequence-type-Monoid (monoid-Group G)

  tail-fin-sequence-type-Group :
    (n : )  fin-sequence-type-Group (succ-ℕ n) 
    fin-sequence-type-Group n
  tail-fin-sequence-type-Group =
    tail-fin-sequence-type-Monoid (monoid-Group G)

  cons-fin-sequence-type-Group :
    (n : )  type-Group G 
    fin-sequence-type-Group n 
    fin-sequence-type-Group (succ-ℕ n)
  cons-fin-sequence-type-Group =
    cons-fin-sequence-type-Monoid (monoid-Group G)

  snoc-fin-sequence-type-Group :
    (n : )  fin-sequence-type-Group n 
    type-Group G  fin-sequence-type-Group (succ-ℕ n)
  snoc-fin-sequence-type-Group =
    snoc-fin-sequence-type-Monoid (monoid-Group G)

Zero finite sequences in a group

module _
  {l : Level} (G : Group l)
  where

  zero-fin-sequence-type-Group :
    (n : )  fin-sequence-type-Group G n
  zero-fin-sequence-type-Group n i = unit-Group G

Negation of finite sequences in a group

module _
  {l : Level} (G : Group l)
  where

  neg-fin-sequence-type-Group :
    (n : )  fin-sequence-type-Group G n  fin-sequence-type-Group G n
  neg-fin-sequence-type-Group n = inv-function-Group G (Fin n)

Pointwise addition of finite sequences in a group

module _
  {l : Level} (G : Group l)
  where

  add-fin-sequence-type-Group :
    (n : ) (v w : fin-sequence-type-Group G n) 
    fin-sequence-type-Group G n
  add-fin-sequence-type-Group =
    add-fin-sequence-type-Monoid (monoid-Group G)

  associative-add-fin-sequence-type-Group :
    (n : ) (v1 v2 v3 : fin-sequence-type-Group G n) 
    ( add-fin-sequence-type-Group n
      ( add-fin-sequence-type-Group n v1 v2) v3) 
    ( add-fin-sequence-type-Group n v1
      ( add-fin-sequence-type-Group n v2 v3))
  associative-add-fin-sequence-type-Group =
    associative-add-fin-sequence-type-Monoid (monoid-Group G)

  left-unit-law-add-fin-sequence-type-Group :
    (n : ) (v : fin-sequence-type-Group G n) 
    add-fin-sequence-type-Group n
      ( zero-fin-sequence-type-Group G n) v  v
  left-unit-law-add-fin-sequence-type-Group =
    left-unit-law-add-fin-sequence-type-Monoid (monoid-Group G)

  right-unit-law-add-fin-sequence-type-Group :
    (n : ) (v : fin-sequence-type-Group G n) 
    add-fin-sequence-type-Group n v
      ( zero-fin-sequence-type-Group G n)  v
  right-unit-law-add-fin-sequence-type-Group =
    right-unit-law-add-fin-sequence-type-Monoid (monoid-Group G)

  left-inverse-law-add-fin-sequence-type-Group :
    (n : ) (v : fin-sequence-type-Group G n) 
    add-fin-sequence-type-Group n
      ( neg-fin-sequence-type-Group G n v)
      ( v) 
    zero-fin-sequence-type-Group G n
  left-inverse-law-add-fin-sequence-type-Group n =
    left-inverse-law-mul-function-Group G (Fin n)

  right-inverse-law-add-fin-sequence-type-Group :
    (n : ) (v : fin-sequence-type-Group G n) 
    add-fin-sequence-type-Group n
      ( v)
      ( neg-fin-sequence-type-Group G n v) 
    zero-fin-sequence-type-Group G n
  right-inverse-law-add-fin-sequence-type-Group n =
    right-inverse-law-mul-function-Group G (Fin n)

  group-fin-sequence-type-Group :   Group l
  group-fin-sequence-type-Group n = function-Group G (Fin n)

Recent changes