Images of metric spaces
Content created by Louis Wasserman.
Created on 2025-08-31.
Last modified on 2025-08-31.
module metric-spaces.images-metric-spaces where
Imports
open import foundation.images open import foundation.universe-levels open import metric-spaces.functions-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.subspaces-metric-spaces
Idea
Given a function between
metric spaces f : X → Y
, the
image of X
under f
is a
subspace of Y
.
Definition
module _ {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (f : type-function-Metric-Space X Y) where im-Metric-Space : Metric-Space (l1 ⊔ l3) l4 im-Metric-Space = subspace-Metric-Space Y (subtype-im f)
Recent changes
- 2025-08-31. Louis Wasserman. The image of a totally bounded metric space under a uniformly continuous function is totally bounded (#1513).