Functorial action on short maps of metric quotients of pseudometric spaces
Content created by malarbol.
Created on 2026-01-31.
Last modified on 2026-02-19.
{-# OPTIONS --lossy-unification #-} module metric-spaces.functoriality-short-maps-metric-quotients-of-pseudometric-spaces where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.propositional-truncations open import foundation.transport-along-identifications open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import metric-spaces.maps-metric-spaces open import metric-spaces.metric-quotients-of-pseudometric-spaces open import metric-spaces.metric-spaces open import metric-spaces.pseudometric-spaces open import metric-spaces.short-maps-metric-spaces open import metric-spaces.short-maps-pseudometric-spaces open import metric-spaces.similarity-of-elements-pseudometric-spaces open import metric-spaces.unit-map-metric-quotients-of-pseudometric-spaces open import metric-spaces.universal-property-short-maps-metric-quotients-of-pseudometric-spaces
Idea
Postcomposition with the
unit map of metric quotients,
the natural isometry from a
pseudometric space Q into its
metric quotient
q : Q → [Q]
maps short maps f : P → Q
from a pseudometric spaces P to short maps q ∘ f : P → [Q]. By the
universal property of metric quotients and short maps,
these factor as short maps q⋆f : [P] → [Q]. This action preserves the identity
and composition of short maps and induce commutative diagrams
f g
P ------> Q ------> R
| | |
| | |
| | |
v v v
[P] ----> [Q] ----> [R]
[f] [g]
It is the functorial action¶ of metric quotients on short maps.
Definitions
Postcomposition of short maps by the unit isometry of metric quotients
module _ {l1 l2 l1' l2' : Level} (P : Pseudometric-Space l1 l2) (Q : Pseudometric-Space l1' l2') where postcomp-short-map-unit-metric-quotient-Pseudometric-Space : short-map-Pseudometric-Space P Q → short-map-Pseudometric-Space ( P) ( pseudometric-metric-quotient-Pseudometric-Space Q) postcomp-short-map-unit-metric-quotient-Pseudometric-Space = comp-short-map-Pseudometric-Space ( P) ( Q) ( pseudometric-metric-quotient-Pseudometric-Space Q) ( short-map-unit-metric-quotient-Pseudometric-Space Q)
Action of metric quotients on short maps between pseudometric spaces
module _ {l1 l2 l1' l2' : Level} (P : Pseudometric-Space l1 l2) (Q : Pseudometric-Space l1' l2') where short-map-metric-quotient-Pseudometric-Space : short-map-Pseudometric-Space P Q → short-map-Metric-Space ( metric-quotient-Pseudometric-Space P) ( metric-quotient-Pseudometric-Space Q) short-map-metric-quotient-Pseudometric-Space f = short-map-exten-short-map-metric-quotient-Pseudometric-Space ( P) ( metric-quotient-Pseudometric-Space Q) ( postcomp-short-map-unit-metric-quotient-Pseudometric-Space P Q f) map-short-map-metric-quotient-Pseudometric-Space : short-map-Pseudometric-Space P Q → map-Metric-Space ( metric-quotient-Pseudometric-Space P) ( metric-quotient-Pseudometric-Space Q) map-short-map-metric-quotient-Pseudometric-Space = map-short-map-Metric-Space ( metric-quotient-Pseudometric-Space P) ( metric-quotient-Pseudometric-Space Q) ∘ short-map-metric-quotient-Pseudometric-Space
Properties
The action of metric quotients on short maps is natural
module _ {l1 l2 l1' l2' : Level} (P : Pseudometric-Space l1 l2) (Q : Pseudometric-Space l1' l2') (f : short-map-Pseudometric-Space P Q) where coh-square-map-short-map-metric-quotient-Pseudometric-Space : ( map-short-map-metric-quotient-Pseudometric-Space P Q f ∘ map-unit-metric-quotient-Pseudometric-Space P) ~ ( map-unit-metric-quotient-Pseudometric-Space Q ∘ map-short-map-Pseudometric-Space P Q f) coh-square-map-short-map-metric-quotient-Pseudometric-Space = is-extension-exten-short-map-metric-quotient-Pseudometric-Space ( P) ( metric-quotient-Pseudometric-Space Q) ( postcomp-short-map-unit-metric-quotient-Pseudometric-Space P Q f) coh-square-short-map-metric-quotient-Pseudometric-Space : comp-short-map-Pseudometric-Space ( P) ( pseudometric-metric-quotient-Pseudometric-Space P) ( pseudometric-metric-quotient-Pseudometric-Space Q) ( short-map-metric-quotient-Pseudometric-Space P Q f) ( short-map-unit-metric-quotient-Pseudometric-Space P) = comp-short-map-Pseudometric-Space ( P) ( Q) ( pseudometric-metric-quotient-Pseudometric-Space Q) ( short-map-unit-metric-quotient-Pseudometric-Space Q) ( f) coh-square-short-map-metric-quotient-Pseudometric-Space = eq-htpy-map-short-map-Pseudometric-Space ( P) ( pseudometric-metric-quotient-Pseudometric-Space Q) ( comp-short-map-Pseudometric-Space ( P) ( pseudometric-metric-quotient-Pseudometric-Space P) ( pseudometric-metric-quotient-Pseudometric-Space Q) ( short-map-metric-quotient-Pseudometric-Space P Q f) ( short-map-unit-metric-quotient-Pseudometric-Space P)) ( comp-short-map-Pseudometric-Space ( P) ( Q) ( pseudometric-metric-quotient-Pseudometric-Space Q) ( short-map-unit-metric-quotient-Pseudometric-Space Q) ( f)) ( coh-square-map-short-map-metric-quotient-Pseudometric-Space)
The action on short maps of metric quotients preserves the identity
module _ {l1 l2 : Level} (P : Pseudometric-Space l1 l2) where abstract exten-id-short-map-metric-quotient-Pseudometric-Space : extension-short-map-metric-quotient-Pseudometric-Space ( P) ( metric-quotient-Pseudometric-Space P) ( short-map-unit-metric-quotient-Pseudometric-Space P) pr1 exten-id-short-map-metric-quotient-Pseudometric-Space = id-short-map-Metric-Space (metric-quotient-Pseudometric-Space P) pr2 exten-id-short-map-metric-quotient-Pseudometric-Space = refl-htpy htpy-id-short-map-metric-quotient-Pseudometric-Space : ( map-short-map-metric-quotient-Pseudometric-Space P P ( id-short-map-Pseudometric-Space P)) ~ ( id) htpy-id-short-map-metric-quotient-Pseudometric-Space = all-htpy-map-extension-short-map-metric-quotient-Pseudometric-Space ( P) ( metric-quotient-Pseudometric-Space P) ( short-map-unit-metric-quotient-Pseudometric-Space P) ( exten-id-short-map-metric-quotient-Pseudometric-Space) preserves-id-short-map-metric-quotient-Pseudometric-Space : short-map-metric-quotient-Pseudometric-Space P P ( id-short-map-Pseudometric-Space P) = id-short-map-Metric-Space ( metric-quotient-Pseudometric-Space P) preserves-id-short-map-metric-quotient-Pseudometric-Space = eq-htpy-map-short-map-Metric-Space ( metric-quotient-Pseudometric-Space P) ( metric-quotient-Pseudometric-Space P) ( short-map-metric-quotient-Pseudometric-Space P P ( id-short-map-Pseudometric-Space P)) ( id-short-map-Metric-Space (metric-quotient-Pseudometric-Space P)) ( htpy-id-short-map-metric-quotient-Pseudometric-Space)
The action on short maps of metric quotients preserves composition
module _ {lp lp' lq lq' lr lr' : Level} (P : Pseudometric-Space lp lp') (Q : Pseudometric-Space lq lq') (R : Pseudometric-Space lr lr') (g : short-map-Pseudometric-Space Q R) (f : short-map-Pseudometric-Space P Q) where abstract exten-comp-short-map-metric-quotient-Pseudometric-Space : extension-short-map-metric-quotient-Pseudometric-Space ( P) ( metric-quotient-Pseudometric-Space R) ( postcomp-short-map-unit-metric-quotient-Pseudometric-Space ( P) ( R) ( comp-short-map-Pseudometric-Space P Q R g f)) pr1 exten-comp-short-map-metric-quotient-Pseudometric-Space = comp-short-map-Metric-Space ( metric-quotient-Pseudometric-Space P) ( metric-quotient-Pseudometric-Space Q) ( metric-quotient-Pseudometric-Space R) ( short-map-metric-quotient-Pseudometric-Space Q R g) ( short-map-metric-quotient-Pseudometric-Space P Q f) pr2 exten-comp-short-map-metric-quotient-Pseudometric-Space = ( map-short-map-metric-quotient-Pseudometric-Space Q R g) ·l ( coh-square-map-short-map-metric-quotient-Pseudometric-Space P Q f) ∙h ( coh-square-map-short-map-metric-quotient-Pseudometric-Space Q R g) ·r ( map-short-map-Pseudometric-Space P Q f) htpy-comp-map-metric-quotient-short-map-Pseudometric-Space : ( map-short-map-metric-quotient-Pseudometric-Space P R ( comp-short-map-Pseudometric-Space P Q R g f)) ~ ( map-short-map-metric-quotient-Pseudometric-Space Q R g ∘ map-short-map-metric-quotient-Pseudometric-Space P Q f) htpy-comp-map-metric-quotient-short-map-Pseudometric-Space = all-htpy-map-extension-short-map-metric-quotient-Pseudometric-Space ( P) ( metric-quotient-Pseudometric-Space R) ( postcomp-short-map-unit-metric-quotient-Pseudometric-Space P R ( comp-short-map-Pseudometric-Space P Q R g f)) ( exten-comp-short-map-metric-quotient-Pseudometric-Space) preserves-comp-short-map-metric-quotient-Pseudometric-Space : ( short-map-metric-quotient-Pseudometric-Space P R ( comp-short-map-Pseudometric-Space P Q R g f)) = ( comp-short-map-Metric-Space ( metric-quotient-Pseudometric-Space P) ( metric-quotient-Pseudometric-Space Q) ( metric-quotient-Pseudometric-Space R) ( short-map-metric-quotient-Pseudometric-Space Q R g) ( short-map-metric-quotient-Pseudometric-Space P Q f)) preserves-comp-short-map-metric-quotient-Pseudometric-Space = eq-htpy-map-short-map-Metric-Space ( metric-quotient-Pseudometric-Space P) ( metric-quotient-Pseudometric-Space R) ( short-map-metric-quotient-Pseudometric-Space P R ( comp-short-map-Pseudometric-Space P Q R g f)) ( comp-short-map-Metric-Space ( metric-quotient-Pseudometric-Space P) ( metric-quotient-Pseudometric-Space Q) ( metric-quotient-Pseudometric-Space R) ( short-map-metric-quotient-Pseudometric-Space Q R g) ( short-map-metric-quotient-Pseudometric-Space P Q f)) ( htpy-comp-map-metric-quotient-short-map-Pseudometric-Space)
Short maps with similar images induce homotopic short maps between the metric quotients
module _ {l1 l2 l1' l2' : Level} (P : Pseudometric-Space l1 l2) (Q : Pseudometric-Space l1' l2') (f g : short-map-Pseudometric-Space P Q) where abstract htpy-sim-short-map-metric-quotient-Pseudometric-Space : ( (x : type-Pseudometric-Space P) → sim-Pseudometric-Space Q ( map-short-map-Pseudometric-Space P Q f x) ( map-short-map-Pseudometric-Space P Q g x)) → htpy-map-short-map-Metric-Space ( metric-quotient-Pseudometric-Space P) ( metric-quotient-Pseudometric-Space Q) ( short-map-metric-quotient-Pseudometric-Space P Q f) ( short-map-metric-quotient-Pseudometric-Space P Q g) htpy-sim-short-map-metric-quotient-Pseudometric-Space H X = let open do-syntax-trunc-Prop ( eq-prop-Metric-Space ( metric-quotient-Pseudometric-Space Q) ( map-short-map-metric-quotient-Pseudometric-Space P Q f X) ( map-short-map-metric-quotient-Pseudometric-Space P Q g X)) in do ( x , x∈X) ← is-inhabited-class-metric-quotient-Pseudometric-Space P X ( ( compute-map-exten-short-map-metric-quotient-Pseudometric-Space ( P) ( metric-quotient-Pseudometric-Space Q) ( postcomp-short-map-unit-metric-quotient-Pseudometric-Space P Q f) ( X) ( x∈X)) ∙ ( eq-map-unit-metric-quotient-sim-Pseudometric-Space Q ( map-short-map-Pseudometric-Space P Q f x) ( map-short-map-Pseudometric-Space P Q g x) ( H x)) ∙ ( inv ( compute-map-exten-short-map-metric-quotient-Pseudometric-Space ( P) ( metric-quotient-Pseudometric-Space Q) ( postcomp-short-map-unit-metric-quotient-Pseudometric-Space P Q g) ( X) ( x∈X))))
The action of metric quotients on short maps preserves homotopies
module _ {l1 l2 l1' l2' : Level} (P : Pseudometric-Space l1 l2) (Q : Pseudometric-Space l1' l2') (f g : short-map-Pseudometric-Space P Q) where abstract preserves-htpy-short-map-metric-quotient-Pseudometric-Space : htpy-map-short-map-Pseudometric-Space P Q f g → htpy-map-short-map-Metric-Space ( metric-quotient-Pseudometric-Space P) ( metric-quotient-Pseudometric-Space Q) ( short-map-metric-quotient-Pseudometric-Space P Q f) ( short-map-metric-quotient-Pseudometric-Space P Q g) preserves-htpy-short-map-metric-quotient-Pseudometric-Space f~g = htpy-sim-short-map-metric-quotient-Pseudometric-Space P Q f g ( λ x → sim-eq-Pseudometric-Space Q ( map-short-map-Pseudometric-Space P Q f x) ( map-short-map-Pseudometric-Space P Q g x) ( f~g x))
Recent changes
- 2026-02-19. malarbol. The action of metric quotients preserves homotopies (#1851).
- 2026-02-12. malarbol. Fix names for Cauchy pseudocompletions constructions (#1814).
- 2026-02-04. malarbol. Functoriality of metric quotients and isometries (#1807).
- 2026-01-31. malarbol. Functoriality of metric quotients and short maps (#1788).