Equivalences between categories
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-09-13.
Last modified on 2023-09-13.
module category-theory.equivalences-of-categories where
Imports
open import category-theory.categories open import category-theory.equivalences-of-precategories open import category-theory.functors-categories open import foundation.universe-levels
Idea
A functor F : C → D
on
categories is an equivalence if it is an
equivalence on the underlying precategories.
Definition
module _ {l1 l2 l3 l4 : Level} (C : Category l1 l2) (D : Category l3 l4) where is-equiv-functor-Category : functor-Category C D → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-equiv-functor-Category = is-equiv-functor-Precategory ( precategory-Category C) ( precategory-Category D) equiv-Category : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) equiv-Category = equiv-Precategory (precategory-Category C) (precategory-Category D)
Recent changes
- 2023-09-13. Fredrik Bakke and Egbert Rijke. Refactor structured monoids (#761).