Rings

Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides, Maša Žaucer, Fernando Chu, Gregor Perčič, Victor Blanchi, favonia and maybemabeline.

Created on 2022-03-12.
Last modified on 2024-02-07.

module ring-theory.rings where
Imports
open import elementary-number-theory.addition-natural-numbers
open import elementary-number-theory.natural-numbers

open import foundation.action-on-identifications-binary-functions
open import foundation.action-on-identifications-functions
open import foundation.binary-embeddings
open import foundation.binary-equivalences
open import foundation.cartesian-product-types
open import foundation.dependent-pair-types
open import foundation.embeddings
open import foundation.equivalences
open import foundation.function-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.injective-maps
open import foundation.involutions
open import foundation.negation
open import foundation.propositions
open import foundation.sets
open import foundation.unital-binary-operations
open import foundation.universe-levels

open import group-theory.abelian-groups
open import group-theory.commutative-monoids
open import group-theory.groups
open import group-theory.monoids
open import group-theory.semigroups

open import lists.concatenation-lists
open import lists.lists

open import ring-theory.semirings

Idea

The concept of ring vastly generalizes the arithmetical structure on the integers. A ring consists of a set equipped with addition and multiplication, where the addition operation gives the ring the structure of an abelian group, and the multiplication is associative, unital, and distributive over addition.

Definitions

Rings

has-mul-Ab : {l1 : Level} (A : Ab l1)  UU l1
has-mul-Ab A =
  Σ ( has-associative-mul-Set (set-Ab A))
    ( λ μ 
      ( is-unital (pr1 μ)) ×
      ( ( (a b c : type-Ab A) 
          Id (pr1 μ a (add-Ab A b c)) (add-Ab A (pr1 μ a b) (pr1 μ a c))) ×
        ( (a b c : type-Ab A) 
          Id (pr1 μ (add-Ab A a b) c) (add-Ab A (pr1 μ a c) (pr1 μ b c)))))

Ring : (l1 : Level)  UU (lsuc l1)
Ring l1 = Σ (Ab l1) has-mul-Ab

module _
  {l : Level} (R : Ring l)
  where

  ab-Ring : Ab l
  ab-Ring = pr1 R

  group-Ring : Group l
  group-Ring = group-Ab ab-Ring

  additive-commutative-monoid-Ring : Commutative-Monoid l
  additive-commutative-monoid-Ring = commutative-monoid-Ab ab-Ring

  additive-monoid-Ring : Monoid l
  additive-monoid-Ring = monoid-Ab ab-Ring

  additive-semigroup-Ring : Semigroup l
  additive-semigroup-Ring = semigroup-Ab ab-Ring

  set-Ring : Set l
  set-Ring = set-Ab ab-Ring

  type-Ring : UU l
  type-Ring = type-Ab ab-Ring

  is-set-type-Ring : is-set type-Ring
  is-set-type-Ring = is-set-type-Ab ab-Ring

Addition in a ring

module _
  {l : Level} (R : Ring l)
  where

  has-associative-add-Ring : has-associative-mul-Set (set-Ring R)
  has-associative-add-Ring = has-associative-add-Ab (ab-Ring R)

  add-Ring : type-Ring R  type-Ring R  type-Ring R
  add-Ring = add-Ab (ab-Ring R)

  add-Ring' : type-Ring R  type-Ring R  type-Ring R
  add-Ring' = add-Ab' (ab-Ring R)

  ap-add-Ring :
    {x y x' y' : type-Ring R} 
    Id x x'  Id y y'  Id (add-Ring x y) (add-Ring x' y')
  ap-add-Ring = ap-add-Ab (ab-Ring R)

  associative-add-Ring :
    (x y z : type-Ring R) 
    Id (add-Ring (add-Ring x y) z) (add-Ring x (add-Ring y z))
  associative-add-Ring = associative-add-Ab (ab-Ring R)

  is-group-additive-semigroup-Ring : is-group (additive-semigroup-Ring R)
  is-group-additive-semigroup-Ring = is-group-Ab (ab-Ring R)

  commutative-add-Ring : (x y : type-Ring R)  Id (add-Ring x y) (add-Ring y x)
  commutative-add-Ring = commutative-add-Ab (ab-Ring R)

  interchange-add-add-Ring :
    (x y x' y' : type-Ring R) 
    ( add-Ring (add-Ring x y) (add-Ring x' y')) 
    ( add-Ring (add-Ring x x') (add-Ring y y'))
  interchange-add-add-Ring =
    interchange-add-add-Ab (ab-Ring R)

  right-swap-add-Ring :
    (x y z : type-Ring R) 
    add-Ring (add-Ring x y) z  add-Ring (add-Ring x z) y
  right-swap-add-Ring = right-swap-add-Ab (ab-Ring R)

  left-swap-add-Ring :
    (x y z : type-Ring R) 
    add-Ring x (add-Ring y z)  add-Ring y (add-Ring x z)
  left-swap-add-Ring = left-swap-add-Ab (ab-Ring R)

Addition in a ring is a binary equivalence

Addition on the left is an equivalence

module _
  {l : Level} (R : Ring l)
  where

  left-subtraction-Ring : type-Ring R  type-Ring R  type-Ring R
  left-subtraction-Ring = left-subtraction-Ab (ab-Ring R)

  ap-left-subtraction-Ring :
    {x x' y y' : type-Ring R}  x  x'  y  y' 
    left-subtraction-Ring x y  left-subtraction-Ring x' y'
  ap-left-subtraction-Ring =
    ap-left-subtraction-Ab (ab-Ring R)

  is-section-left-subtraction-Ring :
    (x : type-Ring R)  (add-Ring R x  left-subtraction-Ring x) ~ id
  is-section-left-subtraction-Ring =
    is-section-left-subtraction-Ab (ab-Ring R)

  is-retraction-left-subtraction-Ring :
    (x : type-Ring R)  (left-subtraction-Ring x  add-Ring R x) ~ id
  is-retraction-left-subtraction-Ring =
    is-retraction-left-subtraction-Ab (ab-Ring R)

  is-equiv-add-Ring : (x : type-Ring R)  is-equiv (add-Ring R x)
  is-equiv-add-Ring = is-equiv-add-Ab (ab-Ring R)

  equiv-add-Ring : type-Ring R  (type-Ring R  type-Ring R)
  equiv-add-Ring = equiv-add-Ab (ab-Ring R)

Addition on the right is an equivalence

module _
  {l : Level} (R : Ring l)
  where

  right-subtraction-Ring : type-Ring R  type-Ring R  type-Ring R
  right-subtraction-Ring = right-subtraction-Ab (ab-Ring R)

  ap-right-subtraction-Ring :
    {x x' y y' : type-Ring R}  x  x'  y  y' 
    right-subtraction-Ring x y  right-subtraction-Ring x' y'
  ap-right-subtraction-Ring = ap-right-subtraction-Ab (ab-Ring R)

  is-section-right-subtraction-Ring :
    (x : type-Ring R) 
    (add-Ring' R x   y  right-subtraction-Ring y x)) ~ id
  is-section-right-subtraction-Ring =
    is-section-right-subtraction-Ab (ab-Ring R)

  is-retraction-right-subtraction-Ring :
    (x : type-Ring R) 
    ((λ y  right-subtraction-Ring y x)  add-Ring' R x) ~ id
  is-retraction-right-subtraction-Ring =
    is-retraction-right-subtraction-Ab (ab-Ring R)

  is-equiv-add-Ring' : (x : type-Ring R)  is-equiv (add-Ring' R x)
  is-equiv-add-Ring' = is-equiv-add-Ab' (ab-Ring R)

  equiv-add-Ring' : type-Ring R  (type-Ring R  type-Ring R)
  equiv-add-Ring' = equiv-add-Ab' (ab-Ring R)

Addition in a ring is a binary equivalence

module _
  {l : Level} (R : Ring l)
  where

  is-binary-equiv-add-Ring : is-binary-equiv (add-Ring R)
  is-binary-equiv-add-Ring = is-binary-equiv-add-Ab (ab-Ring R)

Addition in a ring is a binary embedding

  is-binary-emb-add-Ring : is-binary-emb (add-Ring R)
  is-binary-emb-add-Ring = is-binary-emb-add-Ab (ab-Ring R)

  is-emb-add-Ring : (x : type-Ring R)  is-emb (add-Ring R x)
  is-emb-add-Ring = is-emb-add-Ab (ab-Ring R)

  is-emb-add-Ring' : (x : type-Ring R)  is-emb (add-Ring' R x)
  is-emb-add-Ring' = is-emb-add-Ab' (ab-Ring R)

Addition in a ring is pointwise injective from both sides

  is-injective-add-Ring : (x : type-Ring R)  is-injective (add-Ring R x)
  is-injective-add-Ring = is-injective-add-Ab (ab-Ring R)

  is-injective-add-Ring' : (x : type-Ring R)  is-injective (add-Ring' R x)
  is-injective-add-Ring' = is-injective-add-Ab' (ab-Ring R)

The zero element of a ring

module _
  {l : Level} (R : Ring l)
  where

  has-zero-Ring : is-unital (add-Ring R)
  has-zero-Ring = has-zero-Ab (ab-Ring R)

  zero-Ring : type-Ring R
  zero-Ring = zero-Ab (ab-Ring R)

  is-zero-Ring : type-Ring R  UU l
  is-zero-Ring x = Id x zero-Ring

  is-nonzero-Ring : type-Ring R  UU l
  is-nonzero-Ring x = ¬ (is-zero-Ring x)

  is-zero-ring-Prop : type-Ring R  Prop l
  is-zero-ring-Prop x = Id-Prop (set-Ring R) x zero-Ring

  is-nonzero-ring-Prop : type-Ring R  Prop l
  is-nonzero-ring-Prop x = neg-Prop (is-zero-ring-Prop x)

  left-unit-law-add-Ring : (x : type-Ring R)  Id (add-Ring R zero-Ring x) x
  left-unit-law-add-Ring = left-unit-law-add-Ab (ab-Ring R)

  right-unit-law-add-Ring : (x : type-Ring R)  Id (add-Ring R x zero-Ring) x
  right-unit-law-add-Ring = right-unit-law-add-Ab (ab-Ring R)

Additive inverses in a ring

module _
  {l : Level} (R : Ring l)
  where

  has-negatives-Ring : is-group' (additive-semigroup-Ring R) (has-zero-Ring R)
  has-negatives-Ring = has-negatives-Ab (ab-Ring R)

  neg-Ring : type-Ring R  type-Ring R
  neg-Ring = neg-Ab (ab-Ring R)

  left-inverse-law-add-Ring :
    (x : type-Ring R)  Id (add-Ring R (neg-Ring x) x) (zero-Ring R)
  left-inverse-law-add-Ring = left-inverse-law-add-Ab (ab-Ring R)

  right-inverse-law-add-Ring :
    (x : type-Ring R)  Id (add-Ring R x (neg-Ring x)) (zero-Ring R)
  right-inverse-law-add-Ring = right-inverse-law-add-Ab (ab-Ring R)

  neg-neg-Ring : (x : type-Ring R)  neg-Ring (neg-Ring x)  x
  neg-neg-Ring = neg-neg-Ab (ab-Ring R)

  distributive-neg-add-Ring :
    (x y : type-Ring R) 
    neg-Ring (add-Ring R x y)  add-Ring R (neg-Ring x) (neg-Ring y)
  distributive-neg-add-Ring = distributive-neg-add-Ab (ab-Ring R)

  neg-zero-Ring : neg-Ring (zero-Ring R)  (zero-Ring R)
  neg-zero-Ring = neg-zero-Ab (ab-Ring R)

  add-and-subtract-Ring :
    (x y z : type-Ring R) 
    add-Ring R (add-Ring R x y) (add-Ring R (neg-Ring y) z)  add-Ring R x z
  add-and-subtract-Ring x y z =
    equational-reasoning
      add-Ring R (add-Ring R x y) (add-Ring R (neg-Ring y) z)
       add-Ring R (add-Ring R y x) (add-Ring R (neg-Ring y) z)
        by
        ( ap
          ( add-Ring' R (add-Ring R (neg-Ring y) z))
          ( commutative-add-Ring R x y))
       add-Ring R (add-Ring R y (neg-Ring y)) (add-Ring R x z)
        by interchange-add-add-Ring R y x (neg-Ring y) z
       add-Ring R (zero-Ring R) (add-Ring R x z)
        by
        ( ap
          ( add-Ring' R (add-Ring R x z))
          ( right-inverse-law-add-Ring y))
       add-Ring R x z
        by left-unit-law-add-Ring R (add-Ring R x z)

  eq-is-unit-left-div-Ring :
    {x y : type-Ring R} 
    (is-zero-Ring R (add-Ring R (neg-Ring x) y))  x  y
  eq-is-unit-left-div-Ring {x} {y} H =
    eq-is-unit-left-div-Group (group-Ring R) H

  is-unit-left-div-eq-Ring :
    {x y : type-Ring R} 
    x  y  (is-zero-Ring R (add-Ring R (neg-Ring x) y))
  is-unit-left-div-eq-Ring {x} {y} H =
    is-unit-left-div-eq-Group (group-Ring R) H

Multiplication in a ring

module _
  {l : Level} (R : Ring l)
  where

  has-associative-mul-Ring : has-associative-mul-Set (set-Ring R)
  has-associative-mul-Ring = pr1 (pr2 R)

  mul-Ring : type-Ring R  type-Ring R  type-Ring R
  mul-Ring = pr1 has-associative-mul-Ring

  mul-Ring' : type-Ring R  type-Ring R  type-Ring R
  mul-Ring' x y = mul-Ring y x

  ap-mul-Ring :
    {x x' y y' : type-Ring R} (p : Id x x') (q : Id y y') 
    Id (mul-Ring x y) (mul-Ring x' y')
  ap-mul-Ring p q = ap-binary mul-Ring p q

  associative-mul-Ring :
    (x y z : type-Ring R) 
    Id (mul-Ring (mul-Ring x y) z) (mul-Ring x (mul-Ring y z))
  associative-mul-Ring = pr2 has-associative-mul-Ring

  multiplicative-semigroup-Ring : Semigroup l
  pr1 multiplicative-semigroup-Ring = set-Ring R
  pr2 multiplicative-semigroup-Ring = has-associative-mul-Ring

  left-distributive-mul-add-Ring :
    (x y z : type-Ring R) 
    mul-Ring x (add-Ring R y z)  add-Ring R (mul-Ring x y) (mul-Ring x z)
  left-distributive-mul-add-Ring =
    pr1 (pr2 (pr2 (pr2 R)))

  right-distributive-mul-add-Ring :
    (x y z : type-Ring R) 
    mul-Ring (add-Ring R x y) z  add-Ring R (mul-Ring x z) (mul-Ring y z)
  right-distributive-mul-add-Ring =
    pr2 (pr2 (pr2 (pr2 R)))

Multiplicative units in a ring

module _
  {l : Level} (R : Ring l)
  where

  is-unital-Ring : is-unital (mul-Ring R)
  is-unital-Ring = pr1 (pr2 (pr2 R))

  multiplicative-monoid-Ring : Monoid l
  pr1 multiplicative-monoid-Ring = multiplicative-semigroup-Ring R
  pr2 multiplicative-monoid-Ring = is-unital-Ring

  one-Ring : type-Ring R
  one-Ring = unit-Monoid multiplicative-monoid-Ring

  left-unit-law-mul-Ring : (x : type-Ring R)  Id (mul-Ring R one-Ring x) x
  left-unit-law-mul-Ring = left-unit-law-mul-Monoid multiplicative-monoid-Ring

  right-unit-law-mul-Ring : (x : type-Ring R)  Id (mul-Ring R x one-Ring) x
  right-unit-law-mul-Ring = right-unit-law-mul-Monoid multiplicative-monoid-Ring

The zero laws for multiplication of a ring

module _
  {l : Level} (R : Ring l)
  where

  left-zero-law-mul-Ring :
    (x : type-Ring R)  Id (mul-Ring R (zero-Ring R) x) (zero-Ring R)
  left-zero-law-mul-Ring x =
    is-zero-is-idempotent-Ab
      ( ab-Ring R)
      ( ( inv
          ( right-distributive-mul-add-Ring R (zero-Ring R) (zero-Ring R) x)) 
        ( ap (mul-Ring' R x) (left-unit-law-add-Ring R (zero-Ring R))))

  right-zero-law-mul-Ring :
    (x : type-Ring R)  Id (mul-Ring R x (zero-Ring R)) (zero-Ring R)
  right-zero-law-mul-Ring x =
    is-zero-is-idempotent-Ab
      ( ab-Ring R)
      ( ( inv
          ( left-distributive-mul-add-Ring R x (zero-Ring R) (zero-Ring R))) 
        ( ap (mul-Ring R x) (left-unit-law-add-Ring R (zero-Ring R))))

Rings are semirings

module _
  {l : Level} (R : Ring l)
  where

  has-mul-Ring :
    has-mul-Commutative-Monoid (additive-commutative-monoid-Ring R)
  pr1 has-mul-Ring = has-associative-mul-Ring R
  pr1 (pr2 has-mul-Ring) = is-unital-Ring R
  pr1 (pr2 (pr2 has-mul-Ring)) = left-distributive-mul-add-Ring R
  pr2 (pr2 (pr2 has-mul-Ring)) = right-distributive-mul-add-Ring R

  zero-laws-mul-Ring :
    zero-laws-Commutative-Monoid
      ( additive-commutative-monoid-Ring R)
      ( has-mul-Ring)
  pr1 zero-laws-mul-Ring = left-zero-law-mul-Ring R
  pr2 zero-laws-mul-Ring = right-zero-law-mul-Ring R

  semiring-Ring : Semiring l
  pr1 semiring-Ring = additive-commutative-monoid-Ring R
  pr1 (pr2 semiring-Ring) = has-mul-Ring
  pr2 (pr2 semiring-Ring) = zero-laws-mul-Ring

Computing multiplication with minus one in a ring

module _
  {l : Level} (R : Ring l)
  where

  neg-one-Ring : type-Ring R
  neg-one-Ring = neg-Ring R (one-Ring R)

  mul-neg-one-Ring :
    (x : type-Ring R)  mul-Ring R neg-one-Ring x  neg-Ring R x
  mul-neg-one-Ring x =
    is-injective-add-Ring R x
      ( ( ( ap
            ( add-Ring' R (mul-Ring R neg-one-Ring x))
            ( inv (left-unit-law-mul-Ring R x))) 
          ( ( inv
              ( right-distributive-mul-add-Ring R
                ( one-Ring R)
                ( neg-one-Ring)
                ( x))) 
            ( ( ap
                ( mul-Ring' R x)
                ( right-inverse-law-add-Ring R (one-Ring R))) 
              ( left-zero-law-mul-Ring R x)))) 
        ( inv (right-inverse-law-add-Ring R x)))

  mul-neg-one-Ring' :
    (x : type-Ring R)  mul-Ring R x neg-one-Ring  neg-Ring R x
  mul-neg-one-Ring' x =
    is-injective-add-Ring R x
      ( ( ap
          ( add-Ring' R (mul-Ring R x neg-one-Ring))
          ( inv (right-unit-law-mul-Ring R x))) 
        ( ( inv
            ( left-distributive-mul-add-Ring R x (one-Ring R) neg-one-Ring)) 
          ( ( ap (mul-Ring R x) (right-inverse-law-add-Ring R (one-Ring R))) 
            ( ( right-zero-law-mul-Ring R x) 
              ( inv (right-inverse-law-add-Ring R x))))))

  is-involution-mul-neg-one-Ring :
    is-involution (mul-Ring R neg-one-Ring)
  is-involution-mul-neg-one-Ring x =
    ( mul-neg-one-Ring (mul-Ring R neg-one-Ring x)) 
    ( ( ap (neg-Ring R) (mul-neg-one-Ring x)) 
      ( neg-neg-Ring R x))

  is-involution-mul-neg-one-Ring' :
    is-involution (mul-Ring' R neg-one-Ring)
  is-involution-mul-neg-one-Ring' x =
    ( mul-neg-one-Ring' (mul-Ring R x neg-one-Ring)) 
    ( ( ap (neg-Ring R) (mul-neg-one-Ring' x)) 
      ( neg-neg-Ring R x))

Left and right negative laws for multiplication

module _
  {l : Level} (R : Ring l)
  where

  left-negative-law-mul-Ring :
    (x y : type-Ring R) 
    mul-Ring R (neg-Ring R x) y  neg-Ring R (mul-Ring R x y)
  left-negative-law-mul-Ring x y =
    ( ap (mul-Ring' R y) (inv (mul-neg-one-Ring R x))) 
    ( ( associative-mul-Ring R (neg-one-Ring R) x y) 
      ( mul-neg-one-Ring R (mul-Ring R x y)))

  right-negative-law-mul-Ring :
    (x y : type-Ring R) 
    mul-Ring R x (neg-Ring R y)  neg-Ring R (mul-Ring R x y)
  right-negative-law-mul-Ring x y =
    ( ap (mul-Ring R x) (inv (mul-neg-one-Ring' R y))) 
    ( ( inv (associative-mul-Ring R x y (neg-one-Ring R))) 
      ( mul-neg-one-Ring' R (mul-Ring R x y)))

  mul-neg-Ring :
    (x y : type-Ring R) 
    mul-Ring R (neg-Ring R x) (neg-Ring R y)  mul-Ring R x y
  mul-neg-Ring x y =
    ( left-negative-law-mul-Ring x (neg-Ring R y)) 
    ( ( ap (neg-Ring R) (right-negative-law-mul-Ring x y)) 
      ( neg-neg-Ring R (mul-Ring R x y)))

Distributivity of multiplication over subtraction

module _
  {l : Level} (R : Ring l)
  where

  left-distributive-mul-left-subtraction-Ring :
    (x y z : type-Ring R) 
    mul-Ring R x (left-subtraction-Ring R y z) 
    left-subtraction-Ring R (mul-Ring R x y) (mul-Ring R x z)
  left-distributive-mul-left-subtraction-Ring x y z =
    ( left-distributive-mul-add-Ring R x (neg-Ring R y) z) 
    ( ap (add-Ring' R _) (right-negative-law-mul-Ring R _ _))

  right-distributive-mul-left-subtraction-Ring :
    (x y z : type-Ring R) 
    mul-Ring R (left-subtraction-Ring R x y) z 
    left-subtraction-Ring R (mul-Ring R x z) (mul-Ring R y z)
  right-distributive-mul-left-subtraction-Ring x y z =
    ( right-distributive-mul-add-Ring R (neg-Ring R x) y z) 
    ( ap (add-Ring' R _) (left-negative-law-mul-Ring R _ _))

  left-distributive-mul-right-subtraction-Ring :
    (x y z : type-Ring R) 
    mul-Ring R x (right-subtraction-Ring R y z) 
    right-subtraction-Ring R (mul-Ring R x y) (mul-Ring R x z)
  left-distributive-mul-right-subtraction-Ring x y z =
    ( left-distributive-mul-add-Ring R x y (neg-Ring R z)) 
    ( ap (add-Ring R _) (right-negative-law-mul-Ring R _ _))

  right-distributive-mul-right-subtraction-Ring :
    (x y z : type-Ring R) 
    mul-Ring R (right-subtraction-Ring R x y) z 
    right-subtraction-Ring R (mul-Ring R x z) (mul-Ring R y z)
  right-distributive-mul-right-subtraction-Ring x y z =
    ( right-distributive-mul-add-Ring R x (neg-Ring R y) z) 
    ( ap (add-Ring R _) (left-negative-law-mul-Ring R _ _))

Bidistributivity of multiplication over addition

module _
  {l : Level} (R : Ring l)
  where

  bidistributive-mul-add-Ring :
    (u v x y : type-Ring R) 
    mul-Ring R (add-Ring R u v) (add-Ring R x y) 
    add-Ring R
      ( add-Ring R (mul-Ring R u x) (mul-Ring R u y))
      ( add-Ring R (mul-Ring R v x) (mul-Ring R v y))
  bidistributive-mul-add-Ring =
    bidistributive-mul-add-Semiring (semiring-Ring R)

Scalar multiplication of ring elements by a natural number

module _
  {l : Level} (R : Ring l)
  where

  mul-nat-scalar-Ring :   type-Ring R  type-Ring R
  mul-nat-scalar-Ring = mul-nat-scalar-Semiring (semiring-Ring R)

  ap-mul-nat-scalar-Ring :
    {m n : } {x y : type-Ring R} 
    (m  n)  (x  y)  mul-nat-scalar-Ring m x  mul-nat-scalar-Ring n y
  ap-mul-nat-scalar-Ring = ap-mul-nat-scalar-Semiring (semiring-Ring R)

  left-zero-law-mul-nat-scalar-Ring :
    (x : type-Ring R)  mul-nat-scalar-Ring 0 x  zero-Ring R
  left-zero-law-mul-nat-scalar-Ring =
    left-zero-law-mul-nat-scalar-Semiring (semiring-Ring R)

  right-zero-law-mul-nat-scalar-Ring :
    (n : )  mul-nat-scalar-Ring n (zero-Ring R)  zero-Ring R
  right-zero-law-mul-nat-scalar-Ring =
    right-zero-law-mul-nat-scalar-Semiring (semiring-Ring R)

  left-unit-law-mul-nat-scalar-Ring :
    (x : type-Ring R)  mul-nat-scalar-Ring 1 x  x
  left-unit-law-mul-nat-scalar-Ring =
    left-unit-law-mul-nat-scalar-Semiring (semiring-Ring R)

  left-nat-scalar-law-mul-Ring :
    (n : ) (x y : type-Ring R) 
    mul-Ring R (mul-nat-scalar-Ring n x) y 
    mul-nat-scalar-Ring n (mul-Ring R x y)
  left-nat-scalar-law-mul-Ring =
    left-nat-scalar-law-mul-Semiring (semiring-Ring R)

  right-nat-scalar-law-mul-Ring :
    (n : ) (x y : type-Ring R) 
    mul-Ring R x (mul-nat-scalar-Ring n y) 
    mul-nat-scalar-Ring n (mul-Ring R x y)
  right-nat-scalar-law-mul-Ring =
    right-nat-scalar-law-mul-Semiring (semiring-Ring R)

  left-distributive-mul-nat-scalar-add-Ring :
    (n : ) (x y : type-Ring R) 
    mul-nat-scalar-Ring n (add-Ring R x y) 
    add-Ring R (mul-nat-scalar-Ring n x) (mul-nat-scalar-Ring n y)
  left-distributive-mul-nat-scalar-add-Ring =
    left-distributive-mul-nat-scalar-add-Semiring (semiring-Ring R)

  right-distributive-mul-nat-scalar-add-Ring :
    (m n : ) (x : type-Ring R) 
    mul-nat-scalar-Ring (m +ℕ n) x 
    add-Ring R (mul-nat-scalar-Ring m x) (mul-nat-scalar-Ring n x)
  right-distributive-mul-nat-scalar-add-Ring =
    right-distributive-mul-nat-scalar-add-Semiring (semiring-Ring R)

Addition of a list of elements in an abelian group

module _
  {l : Level} (R : Ring l)
  where

  add-list-Ring : list (type-Ring R)  type-Ring R
  add-list-Ring = add-list-Ab (ab-Ring R)

  preserves-concat-add-list-Ring :
    (l1 l2 : list (type-Ring R)) 
    Id
      ( add-list-Ring (concat-list l1 l2))
      ( add-Ring R (add-list-Ring l1) (add-list-Ring l2))
  preserves-concat-add-list-Ring = preserves-concat-add-list-Ab (ab-Ring R)

Equipping a type with the structure of a ring

structure-ring :
  {l1 : Level}  UU l1  UU l1
structure-ring X =
  Σ ( structure-abelian-group X)
    ( λ p  has-mul-Ab (abelian-group-structure-abelian-group X p))

ring-structure-ring :
  {l1 : Level}  (X : UU l1)  structure-ring X  Ring l1
pr1 (ring-structure-ring X (p , q)) = abelian-group-structure-abelian-group X p
pr2 (ring-structure-ring X (p , q)) = q

Recent changes