Square-free natural numbers
Content created by Fredrik Bakke, Jonathan Prieto-Cubides, Egbert Rijke, Alec Barreto and Nathan van Doorn.
Created on 2022-03-15.
Last modified on 2023-09-24.
module elementary-number-theory.square-free-natural-numbers where
Imports
open import elementary-number-theory.divisibility-natural-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.squares-natural-numbers open import foundation.universe-levels
Idea
A natural number n
is said to be square-free if x² | n ⇒ x = 1
for any
natural number x
.
Definition
is-square-free-ℕ : ℕ → UU lzero is-square-free-ℕ n = (x : ℕ) → div-ℕ (square-ℕ x) n → is-one-ℕ x
Recent changes
- 2023-09-24. Alec Barreto. The Legendre symbol (#796).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import
(#497). - 2023-03-07. Fredrik Bakke. Add blank lines between
<details>
tags and markdown syntax (#490). - 2023-03-07. Jonathan Prieto-Cubides. Show module declarations (#488).