Pullbacks of subtypes

Content created by Egbert Rijke.

Created on 2023-11-24.
Last modified on 2023-11-24.

module foundation.pullbacks-subtypes where
Imports
open import foundation.logical-equivalences
open import foundation.powersets
open import foundation.universe-levels

open import foundation-core.function-types
open import foundation-core.propositions
open import foundation-core.subtypes

open import order-theory.order-preserving-maps-large-posets
open import order-theory.order-preserving-maps-large-preorders

Idea

Consider a subtype T of a type B and a map f : A → B. Then the pullback subtype pullback f T of A is defined to be T ∘ f. This fits in a pullback diagram

                 π₂
  pullback f T -----> T
       | ⌟            |
    π₁ |              | i
       |              |
       V              V
       A -----------> B
               f

The universal property of pullbacks quite literally returns the definition of the subtype pullback f T, because it essentially asserts that

  (S ⊆ pullback f T) ↔ ((x : A) → is-in-subtype S x → is-in-subtype T (f x)).

The operation pullback f : subtype B → subtype A is an order preserving map between the powersets of B and A.

In the file Images of subtypes we show that the pullback operation on subtypes is the upper adjoint of a Galois connection.

Definitions

The predicate of being a pullback of subtypes

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} (f : A  B)
  (T : subtype l3 B) (S : subtype l4 A)
  where

  is-pullback-subtype : UUω
  is-pullback-subtype =
    {l : Level} (U : subtype l A) 
    (U  S)  ((x : A)  is-in-subtype U x  is-in-subtype T (f x))

Pullbacks of subtypes

module _
  {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A  B) (T : subtype l3 B)
  where

  pullback-subtype : subtype l3 A
  pullback-subtype = T  f

  is-in-pullback-subtype : A  UU l3
  is-in-pullback-subtype = is-in-subtype pullback-subtype

  is-prop-is-in-pullback-subtype :
    (x : A)  is-prop (is-in-pullback-subtype x)
  is-prop-is-in-pullback-subtype = is-prop-is-in-subtype pullback-subtype

  type-pullback-subtype : UU (l1  l3)
  type-pullback-subtype = type-subtype pullback-subtype

  inclusion-pullback-subtype : type-pullback-subtype  A
  inclusion-pullback-subtype = inclusion-subtype pullback-subtype

The order preserving pullback operation on subtypes

module _
  {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A  B)
  where

  preserves-order-pullback-subtype :
    preserves-order-map-Large-Poset
      ( powerset-Large-Poset B)
      ( powerset-Large-Poset A)
      ( pullback-subtype f)
  preserves-order-pullback-subtype S T H x = H (f x)

  pullback-subtype-hom-Large-Poset :
    hom-Large-Poset  l  l) (powerset-Large-Poset B) (powerset-Large-Poset A)
  map-hom-Large-Preorder pullback-subtype-hom-Large-Poset =
    pullback-subtype f
  preserves-order-hom-Large-Preorder pullback-subtype-hom-Large-Poset =
    preserves-order-pullback-subtype

See also

Recent changes