Nets in located metric spaces
Content created by Louis Wasserman.
Created on 2025-08-30.
Last modified on 2025-08-30.
module metric-spaces.nets-located-metric-spaces where
Imports
open import elementary-number-theory.natural-numbers open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.existential-quantification open import foundation.propositional-truncations open import foundation.propositions open import foundation.raising-universe-levels open import foundation.singleton-subtypes open import foundation.subtypes open import foundation.surjective-maps open import foundation.torsorial-type-families open import foundation.universe-levels open import metric-spaces.approximations-metric-spaces open import metric-spaces.located-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.nets-metric-spaces open import univalent-combinatorics.finite-subtypes open import univalent-combinatorics.finite-types open import univalent-combinatorics.finitely-enumerable-subtypes open import univalent-combinatorics.finitely-enumerable-types open import univalent-combinatorics.standard-finite-types
Idea
For an ε : ℚ⁺
, an
ε
-net¶
to a located metric space X
is an
ε
-net in the underlying
metric space.
Definition
net-Located-Metric-Space : {l1 l2 : Level} (l3 : Level) → Located-Metric-Space l1 l2 → ℚ⁺ → UU (l1 ⊔ l2 ⊔ lsuc l3) net-Located-Metric-Space l3 X = net-Metric-Space l3 (metric-space-Located-Metric-Space X)
Recent changes
- 2025-08-30. Louis Wasserman. Topology in metric spaces (#1474).