Dependent universal property of flat discrete crisp types
Content created by Fredrik Bakke.
Created on 2024-09-06.
Last modified on 2024-09-06.
{-# OPTIONS --cohesion --flat-split #-} module modal-type-theory.dependent-universal-property-flat-discrete-crisp-types where
Imports
open import foundation.equivalences open import foundation.universe-levels open import modal-type-theory.flat-modality
Idea
The
dependent universal property¶
of a flat discrete crisp type
A
states that for any crisp type family
defined on crisp elements
@♭ B : @♭ A → 𝒰
,
postcomposition by the counit of
the flat modality induces an
equivalence under the flat modality.
Definitions
The dependent universal property of flat discrete crisp types
dependent-coev-flat : {@♭ l1 l2 : Level} {@♭ A : UU l1} {@♭ B : @♭ A → UU l2} → ♭ ((@♭ x : A) → ♭ (B x)) → ♭ ((@♭ x : A) → B x) dependent-coev-flat (intro-flat f) = intro-flat (λ x → counit-flat (f x))
dependent-universal-property-flat-discrete-crisp-type :
{@♭ l1 : Level} (@♭ A : UU l1) → UUω
dependent-universal-property-flat-discrete-crisp-type A =
{@♭ l : Level} {@♭ B : @♭ A → UU l} → is-equiv (dependent-coev-flat {B = B})
Properties
Flat discrete crisp types satisfy the dependent universal property of flat discrete crisp types
This remains to be formalized.
See also
References
- [Lic]
- Dan Licata. Dlicata335/cohesion-agda. GitHub repository. URL: https://github.com/dlicata335/cohesion-agda.
- [Shu18]
- Michael Shulman. Brouwer's fixed-point theorem in real-cohesive homotopy type theory. Mathematical Structures in Computer Science, 28(6):856–941, 06 2018. arXiv:1509.07584, doi:10.1017/S0960129517000147.
Recent changes
- 2024-09-06. Fredrik Bakke. Basic properties of the flat modality (#1078).