Full functors between precategories
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-10-20.
Last modified on 2024-01-27.
module category-theory.full-functors-precategories where
Imports
open import category-theory.full-maps-precategories open import category-theory.functors-precategories open import category-theory.precategories open import foundation.dependent-pair-types open import foundation.function-types open import foundation.propositions open import foundation.universe-levels
Idea
A functor between
precategories C
and D
is full if
it’s surjective on
hom-sets.
Definition
The predicate on functors between precategories of being full
module _ {l1 l2 l3 l4 : Level} (C : Precategory l1 l2) (D : Precategory l3 l4) (F : functor-Precategory C D) where is-full-functor-Precategory : UU (l1 ⊔ l2 ⊔ l4) is-full-functor-Precategory = is-full-map-Precategory C D (map-functor-Precategory C D F) is-prop-is-full-functor-Precategory : is-prop is-full-functor-Precategory is-prop-is-full-functor-Precategory = is-prop-is-full-map-Precategory C D (map-functor-Precategory C D F) is-full-prop-functor-Precategory : Prop (l1 ⊔ l2 ⊔ l4) is-full-prop-functor-Precategory = is-full-prop-map-Precategory C D (map-functor-Precategory C D F)
The type of full functors between two precategories
module _ {l1 l2 l3 l4 : Level} (C : Precategory l1 l2) (D : Precategory l3 l4) where full-functor-Precategory : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) full-functor-Precategory = Σ (functor-Precategory C D) (is-full-functor-Precategory C D) functor-full-functor-Precategory : full-functor-Precategory → functor-Precategory C D functor-full-functor-Precategory = pr1 is-full-full-functor-Precategory : (F : full-functor-Precategory) → is-full-functor-Precategory C D (functor-full-functor-Precategory F) is-full-full-functor-Precategory = pr2 obj-full-functor-Precategory : full-functor-Precategory → obj-Precategory C → obj-Precategory D obj-full-functor-Precategory = obj-functor-Precategory C D ∘ functor-full-functor-Precategory hom-full-functor-Precategory : (F : full-functor-Precategory) {x y : obj-Precategory C} → hom-Precategory C x y → hom-Precategory D ( obj-full-functor-Precategory F x) ( obj-full-functor-Precategory F y) hom-full-functor-Precategory = hom-functor-Precategory C D ∘ functor-full-functor-Precategory
Recent changes
- 2024-01-27. Egbert Rijke. Fix “The predicate of” section headers (#1010).
- 2023-10-20. Fredrik Bakke and Egbert Rijke. Small subcategories (#861).