Homomorphisms of higher group actions
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-04-10.
Last modified on 2023-09-11.
module higher-group-theory.homomorphisms-higher-group-actions where
Imports
open import foundation.equality-dependent-function-types open import foundation.equivalences open import foundation.function-extensionality open import foundation.homotopies open import foundation.identity-types open import foundation.transport-along-identifications open import foundation.universe-levels open import higher-group-theory.higher-group-actions open import higher-group-theory.higher-groups
Definition
Homomorphisms of higher group actions
module _ {l1 l2 l3 : Level} (G : ∞-Group l1) (X : action-∞-Group l2 G) (Y : action-∞-Group l3 G) where hom-action-∞-Group : UU (l1 ⊔ l2 ⊔ l3) hom-action-∞-Group = (u : classifying-type-∞-Group G) → X u → Y u map-hom-action-∞-Group : hom-action-∞-Group → type-action-∞-Group G X → type-action-∞-Group G Y map-hom-action-∞-Group f = f (shape-∞-Group G) preserves-mul-hom-action-∞-Group : (f : hom-action-∞-Group) (g : type-∞-Group G) (x : type-action-∞-Group G X) → ( map-hom-action-∞-Group f (mul-action-∞-Group G X g x)) = ( mul-action-∞-Group G Y g (map-hom-action-∞-Group f x)) preserves-mul-hom-action-∞-Group f g x = preserves-tr f g x
Homotopies of morphisms of higher group actions
module _ {l1 l2 l3 : Level} (G : ∞-Group l1) (X : action-∞-Group l2 G) (Y : action-∞-Group l3 G) (f : hom-action-∞-Group G X Y) where htpy-hom-action-∞-Group : (g : hom-action-∞-Group G X Y) → UU (l1 ⊔ l2 ⊔ l3) htpy-hom-action-∞-Group g = (u : classifying-type-∞-Group G) → (f u) ~ (g u) extensionality-hom-action-∞-Group : (g : hom-action-∞-Group G X Y) → (f = g) ≃ htpy-hom-action-∞-Group g extensionality-hom-action-∞-Group = extensionality-Π f ( λ u g → f u ~ g) ( λ u g → equiv-funext) htpy-eq-hom-action-∞-Group : (g : hom-action-∞-Group G X Y) → (f = g) → htpy-hom-action-∞-Group g htpy-eq-hom-action-∞-Group g = map-equiv (extensionality-hom-action-∞-Group g) eq-htpy-hom-action-∞-Group : (g : hom-action-∞-Group G X Y) → htpy-hom-action-∞-Group g → (f = g) eq-htpy-hom-action-∞-Group g = map-inv-equiv (extensionality-hom-action-∞-Group g)
Recent changes
- 2023-09-11. Fredrik Bakke. Transport along and action on equivalences (#706).
- 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).
- 2023-04-10. Egbert Rijke. Factoring out higher group theory (#559).