Commutators of elements in groups
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-10-11.
Last modified on 2024-10-16.
module group-theory.commutators-of-elements-groups where
Imports
open import foundation.action-on-identifications-functions open import foundation.identity-types open import foundation.universe-levels open import group-theory.commuting-elements-groups open import group-theory.conjugation open import group-theory.groups open import group-theory.homomorphisms-groups
Idea
The commutator of two elements x
and y
of a
group G
is defined to be the element
[x,y] = (xy)(yx)⁻¹
. The commutator of two elements x
and y
is equal to the
unit if and only if x
and y
commute.
Definition
The commutator operation
module _ {l : Level} (G : Group l) where commutator-Group : type-Group G → type-Group G → type-Group G commutator-Group x y = right-div-Group G (mul-Group G x y) (mul-Group G y x)
Properties
The commutator of x
and y
is the unit element if and only x
and y
commute
Proof: By transposing identifications along the group operation, we have an
equivalence (xy = yx) ≃ ((xy)(yx)⁻¹ = e)
.
module _ {l : Level} (G : Group l) where is-unit-commutator-commute-Group : (x y : type-Group G) → commute-Group G x y → is-unit-Group G (commutator-Group G x y) is-unit-commutator-commute-Group x y H = is-unit-right-div-eq-Group G H commute-is-unit-commutator-Group : (x y : type-Group G) → is-unit-Group G (commutator-Group G x y) → commute-Group G x y commute-is-unit-commutator-Group x y H = eq-is-unit-right-div-Group G H
The inverse of the commutator [x,y]
is [y,x]
Proof: Since (uv⁻¹)⁻¹ = vu⁻¹
for any two elements u,v : G
it follows
that ((xy)(yx)⁻¹)⁻¹ = (yx)(xy)⁻¹
.
inv-commutator-Group : (x y : type-Group G) → inv-Group G (commutator-Group G x y) = commutator-Group G y x inv-commutator-Group x y = inv-right-div-Group G (mul-Group G x y) (mul-Group G y x)
Conjugation distributes over the commutator
Proof: The proof is a simple computation, using the fact that conjugation distributes over multiplication and preserves inverses:
u(xy)(yx)⁻¹u⁻¹
= u(xy)u⁻¹u(yx)⁻¹u⁻¹
= ((uxu⁻¹)(uyu⁻¹))(u(yx)u⁻¹)⁻¹
= ((uxu⁻¹)(uyu⁻¹))((uyu⁻¹)(uxu⁻¹))⁻¹.
module _ {l : Level} (G : Group l) where distributive-conjugation-commutator-Group : (u x y : type-Group G) → conjugation-Group G u (commutator-Group G x y) = commutator-Group G (conjugation-Group G u x) (conjugation-Group G u y) distributive-conjugation-commutator-Group u x y = ( distributive-conjugation-mul-Group G u _ _) ∙ ( ap-mul-Group G ( distributive-conjugation-mul-Group G u x y) ( ( conjugation-inv-Group G u _) ∙ ( ap (inv-Group G) (distributive-conjugation-mul-Group G u y x))))
Group homomorphisms preserve commutators
Proof: Consider a group homomorphism
f : G → H
and two elements x y : G
. Then we calculate
f([x,y]) ≐ f((xy)(yx)⁻¹)
= f(xy)f(yx)⁻¹
= (f(x)f(y))(f(y)f(x))⁻¹
≐ [f(x),f(y)].
module _ {l1 l2 : Level} (G : Group l1) (H : Group l2) (f : hom-Group G H) where preserves-commutator-hom-Group : {x y : type-Group G} → map-hom-Group G H f (commutator-Group G x y) = commutator-Group H (map-hom-Group G H f x) (map-hom-Group G H f y) preserves-commutator-hom-Group = ( preserves-right-div-hom-Group G H f) ∙ ( ap-right-div-Group H ( preserves-mul-hom-Group G H f) ( preserves-mul-hom-Group G H f))
External links
- Commutator at Wikidata
- Commutator at Wikipedia
- Commutator at Wolfram MathWorld
- Group commutator at Lab
Recent changes
- 2024-10-16. Fredrik Bakke. Some links in elementary number theory (#1199).
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-11-09. Fredrik Bakke. Typeset
nlab
as$n$Lab
(#911). - 2023-10-13. Egbert Rijke and Fredrik Bakke. The commutator subgroup (#835).
- 2023-10-11. Egbert Rijke. Clean up the commutators of elements file (#829).