Sums of finite sequences of rational numbers
Content created by Louis Wasserman.
Created on 2025-11-16.
Last modified on 2025-11-16.
module elementary-number-theory.sums-of-finite-sequences-of-rational-numbers where
Imports
open import commutative-algebra.sums-of-finite-sequences-of-elements-commutative-rings open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.addition-rational-numbers open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.multiplication-rational-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.rational-numbers open import elementary-number-theory.ring-of-rational-numbers open import foundation.function-types open import foundation.identity-types open import lists.finite-sequences open import univalent-combinatorics.coproduct-types open import univalent-combinatorics.standard-finite-types
Idea
The sum operation¶ extends addition on the rational numbers to any finite sequence of rational numbers.
Definition
sum-fin-sequence-ℚ : (n : ℕ) → fin-sequence ℚ n → ℚ sum-fin-sequence-ℚ = sum-fin-sequence-type-Commutative-Ring commutative-ring-ℚ
Properties
The sum of a constant sequence is multiplication by a natural number
abstract sum-constant-fin-sequence-ℚ : (n : ℕ) (q : ℚ) → sum-fin-sequence-ℚ n (λ _ → q) = rational-ℕ n *ℚ q sum-constant-fin-sequence-ℚ n q = sum-constant-fin-sequence-type-Commutative-Ring commutative-ring-ℚ n q ∙ inv (left-mul-rational-nat-ℚ n q)
If aₙ ≤ bₙ for each n, then Σ aₙ ≤ Σ bₙ
abstract preserves-leq-sum-fin-sequence-ℚ : (n : ℕ) (a b : fin-sequence ℚ n) → ((k : Fin n) → leq-ℚ (a k) (b k)) → leq-ℚ (sum-fin-sequence-ℚ n a) (sum-fin-sequence-ℚ n b) preserves-leq-sum-fin-sequence-ℚ 0 _ _ _ = refl-leq-ℚ zero-ℚ preserves-leq-sum-fin-sequence-ℚ (succ-ℕ n) a b H = preserves-leq-add-ℚ ( preserves-leq-sum-fin-sequence-ℚ ( n) ( a ∘ inl-Fin n) ( b ∘ inl-Fin n) ( H ∘ inl-Fin n)) ( H (neg-one-Fin n))
Multiplication is distributive over sums on finite sequences
abstract left-distributive-mul-sum-fin-sequence-ℚ : (n : ℕ) (q : ℚ) (a : fin-sequence ℚ n) → q *ℚ sum-fin-sequence-ℚ n a = sum-fin-sequence-ℚ n (mul-ℚ q ∘ a) left-distributive-mul-sum-fin-sequence-ℚ = left-distributive-mul-sum-fin-sequence-type-Commutative-Ring ( commutative-ring-ℚ)
Splitting sums of n + m elements into a sum of n elements and a sum of m elements
split-sum-fin-sequence-ℚ : (n m : ℕ) (f : fin-sequence ℚ (n +ℕ m)) → sum-fin-sequence-ℚ (n +ℕ m) f = sum-fin-sequence-ℚ n (f ∘ inl-coproduct-Fin n m) +ℚ sum-fin-sequence-ℚ m (f ∘ inr-coproduct-Fin n m) split-sum-fin-sequence-ℚ = split-sum-fin-sequence-type-Commutative-Ring commutative-ring-ℚ
The sum of a single element is the single element
compute-sum-one-element-ℚ : (a : fin-sequence ℚ 1) → sum-fin-sequence-ℚ 1 a = a (zero-Fin 0) compute-sum-one-element-ℚ = compute-sum-one-element-Commutative-Ring commutative-ring-ℚ
Recent changes
- 2025-11-16. Louis Wasserman. The harmonic series diverges (#1708).