Sums of finite sequences of rational numbers

Content created by Louis Wasserman.

Created on 2025-11-16.
Last modified on 2025-11-16.

module elementary-number-theory.sums-of-finite-sequences-of-rational-numbers where
Imports
open import commutative-algebra.sums-of-finite-sequences-of-elements-commutative-rings

open import elementary-number-theory.addition-natural-numbers
open import elementary-number-theory.addition-rational-numbers
open import elementary-number-theory.inequality-rational-numbers
open import elementary-number-theory.multiplication-rational-numbers
open import elementary-number-theory.natural-numbers
open import elementary-number-theory.rational-numbers
open import elementary-number-theory.ring-of-rational-numbers

open import foundation.function-types
open import foundation.identity-types

open import lists.finite-sequences

open import univalent-combinatorics.coproduct-types
open import univalent-combinatorics.standard-finite-types

Idea

The sum operation extends addition on the rational numbers to any finite sequence of rational numbers.

Definition

sum-fin-sequence-ℚ : (n : )  fin-sequence  n  
sum-fin-sequence-ℚ = sum-fin-sequence-type-Commutative-Ring commutative-ring-ℚ

Properties

The sum of a constant sequence is multiplication by a natural number

abstract
  sum-constant-fin-sequence-ℚ :
    (n : ) (q : ) 
    sum-fin-sequence-ℚ n  _  q)  rational-ℕ n *ℚ q
  sum-constant-fin-sequence-ℚ n q =
    sum-constant-fin-sequence-type-Commutative-Ring commutative-ring-ℚ n q 
    inv (left-mul-rational-nat-ℚ n q)

If aₙ ≤ bₙ for each n, then Σ aₙ ≤ Σ bₙ

abstract
  preserves-leq-sum-fin-sequence-ℚ :
    (n : ) (a b : fin-sequence  n)  ((k : Fin n)  leq-ℚ (a k) (b k)) 
    leq-ℚ (sum-fin-sequence-ℚ n a) (sum-fin-sequence-ℚ n b)
  preserves-leq-sum-fin-sequence-ℚ 0 _ _ _ = refl-leq-ℚ zero-ℚ
  preserves-leq-sum-fin-sequence-ℚ (succ-ℕ n) a b H =
    preserves-leq-add-ℚ
      ( preserves-leq-sum-fin-sequence-ℚ
        ( n)
        ( a  inl-Fin n)
        ( b  inl-Fin n)
        ( H  inl-Fin n))
      ( H (neg-one-Fin n))

Multiplication is distributive over sums on finite sequences

abstract
  left-distributive-mul-sum-fin-sequence-ℚ :
    (n : ) (q : ) (a : fin-sequence  n) 
    q *ℚ sum-fin-sequence-ℚ n a  sum-fin-sequence-ℚ n (mul-ℚ q  a)
  left-distributive-mul-sum-fin-sequence-ℚ =
    left-distributive-mul-sum-fin-sequence-type-Commutative-Ring
      ( commutative-ring-ℚ)

Splitting sums of n + m elements into a sum of n elements and a sum of m elements

split-sum-fin-sequence-ℚ :
  (n m : ) (f : fin-sequence  (n +ℕ m)) 
  sum-fin-sequence-ℚ (n +ℕ m) f 
  sum-fin-sequence-ℚ n (f  inl-coproduct-Fin n m) +ℚ
  sum-fin-sequence-ℚ m (f  inr-coproduct-Fin n m)
split-sum-fin-sequence-ℚ =
  split-sum-fin-sequence-type-Commutative-Ring commutative-ring-ℚ

The sum of a single element is the single element

compute-sum-one-element-ℚ :
  (a : fin-sequence  1)  sum-fin-sequence-ℚ 1 a  a (zero-Fin 0)
compute-sum-one-element-ℚ =
  compute-sum-one-element-Commutative-Ring commutative-ring-ℚ

Recent changes