Finitely enumerable subsets of the real numbers
Content created by Louis Wasserman.
Created on 2025-09-03.
Last modified on 2025-09-06.
module real-numbers.finitely-enumerable-subsets-real-numbers where
Imports
open import foundation.dependent-pair-types open import foundation.involutions open import foundation.subtypes open import foundation.universe-levels open import real-numbers.dedekind-real-numbers open import real-numbers.negation-real-numbers open import real-numbers.subsets-real-numbers open import univalent-combinatorics.finitely-enumerable-subtypes open import univalent-combinatorics.finitely-enumerable-types
Idea
A subset of the real numbers is finitely enumerable¶ if it is finitely enumerable as a subtype of the real numbers.
Definition
finitely-enumerable-subset-ℝ : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) finitely-enumerable-subset-ℝ l1 l2 = finitely-enumerable-subtype l1 (ℝ l2) module _ {l1 l2 : Level} (S : finitely-enumerable-subset-ℝ l1 l2) where subset-finitely-enumerable-subset-ℝ : subset-ℝ l1 l2 subset-finitely-enumerable-subset-ℝ = subtype-finitely-enumerable-subtype S type-finitely-enumerable-subset-ℝ : UU (l1 ⊔ lsuc l2) type-finitely-enumerable-subset-ℝ = type-subtype subset-finitely-enumerable-subset-ℝ is-finitely-enumerable-finitely-enumerable-subset-ℝ : is-finitely-enumerable-subtype subset-finitely-enumerable-subset-ℝ is-finitely-enumerable-finitely-enumerable-subset-ℝ = is-finitely-enumerable-subtype-finitely-enumerable-subtype S inclusion-finitely-enumerable-subset-ℝ : type-finitely-enumerable-subset-ℝ → ℝ l2 inclusion-finitely-enumerable-subset-ℝ = inclusion-subtype subset-finitely-enumerable-subset-ℝ
Properties
The elementwise negation of a finitely enumerable subset of real numbers
neg-finitely-enumerable-subset-ℝ : {l1 l2 : Level} → finitely-enumerable-subset-ℝ l1 l2 → finitely-enumerable-subset-ℝ l1 l2 neg-finitely-enumerable-subset-ℝ (S , is-finitely-enumerable-S) = ( neg-subset-ℝ S , is-finitely-enumerable-equiv ( equiv-precomp-equiv-type-subtype (equiv-is-involution neg-neg-ℝ) S) ( is-finitely-enumerable-S))
Recent changes
- 2025-09-06. Louis Wasserman. Inhabited finitely enumerable subtypes (#1530).
- 2025-09-03. Louis Wasserman. Maximum and minimum of finitely enumerable subsets of the real numbers (#1523).