Dependent sequential diagrams

Content created by Vojtěch Štěpančík.

Created on 2023-10-23.
Last modified on 2023-10-23.

module synthetic-homotopy-theory.dependent-sequential-diagrams where
Imports
open import elementary-number-theory.natural-numbers

open import foundation.dependent-pair-types
open import foundation.function-types
open import foundation.homotopies
open import foundation.universe-levels

open import synthetic-homotopy-theory.sequential-diagrams

Idea

A dependent sequential diagram over a sequential diagram (A, a) is a sequence of families of types B : (n : ℕ) → Aₙ → 𝓤 over the types in the base sequential diagram, equipped with fiberwise maps

bₙ : (x : Aₙ) → Bₙ x → Bₙ₊₁ (aₙ x).

They can be thought of as a family of sequential diagrams

       bₙ(x)           bₙ₊₁(aₙ(x))
 Bₙ(x) ----> Bₙ₊₁(aₙ(x)) -------> Bₙ₊₂(aₙ₊₁(aₙ(x))) ----> ⋯,

one for each x : Aₙ, or as a sequence fibered over (A, a), visualised as

     b₀      b₁      b₂
 B₀ ---> B₁ ---> B₂ ---> ⋯
 |       |       |
 V       V       V
 V       V       V
 A₀ ---> A₁ ---> A₂ ---> ⋯.
     a₀      a₁      a₂

Definitions

Dependent sequential diagrams

dependent-sequential-diagram :
  { l1 : Level}  (A : sequential-diagram l1) 
  ( l2 : Level)  UU (l1  lsuc l2)
dependent-sequential-diagram A l2 =
  Σ ( ( n : )  family-sequential-diagram A n  UU l2)
    ( λ B 
      ( n : ) (x : family-sequential-diagram A n) 
      B n x  B (succ-ℕ n) (map-sequential-diagram A n x))

Components of a dependent sequential diagram

module _
  { l1 l2 : Level} (A : sequential-diagram l1)
  ( B : dependent-sequential-diagram A l2)
  where

  family-dependent-sequential-diagram :
    ( n : )  family-sequential-diagram A n  UU l2
  family-dependent-sequential-diagram = pr1 B

  map-dependent-sequential-diagram :
    ( n : ) (x : family-sequential-diagram A n) 
    family-dependent-sequential-diagram n x 
    family-dependent-sequential-diagram
      ( succ-ℕ n)
      ( map-sequential-diagram A n x)
  map-dependent-sequential-diagram = pr2 B

Constant dependent sequential diagrams

Constant dependent sequential diagrams are dependent sequential diagrams where the dependent type family B is constant.

module _
  { l1 l2 : Level} (A : sequential-diagram l1) (B : sequential-diagram l2)
  where

  constant-dependent-sequential-diagram : dependent-sequential-diagram A l2
  pr1 constant-dependent-sequential-diagram n _ = family-sequential-diagram B n
  pr2 constant-dependent-sequential-diagram n _ = map-sequential-diagram B n

Sections of dependent sequential diagrams

A section of a dependent sequential diagram (B, b) is a sequence of sections sₙ : (x : Aₙ) → Bₙ(x) satisfying the naturality condition that all squares of the form

          bₙ(x)
  Bₙ(x) -------> Bₙ₊₁(aₙ(x))
    ^                ^
 sₙ |                | sₙ₊₁
    |                |
 (x : Aₙ) ---> (aₙ(x) : Aₙ₊₁)
           aₙ

commute.

module _
  { l1 l2 : Level} (A : sequential-diagram l1)
  ( B : dependent-sequential-diagram A l2)
  where

  naturality-section-dependent-sequential-diagram :
    ( s :
      ( n : ) (x : family-sequential-diagram A n) 
      family-dependent-sequential-diagram A B n x) 
    UU (l1  l2)
  naturality-section-dependent-sequential-diagram s =
    ( n : ) 
    ( map-dependent-sequential-diagram A B n _  s n) ~
    ( s (succ-ℕ n)  map-sequential-diagram A n)

  section-dependent-sequential-diagram : UU (l1  l2)
  section-dependent-sequential-diagram =
    Σ ( ( n : ) (x : family-sequential-diagram A n) 
        family-dependent-sequential-diagram A B n x)
      ( λ s  naturality-section-dependent-sequential-diagram s)

Components of sections of dependent sequential diagrams

module _
  { l1 l2 : Level} (A : sequential-diagram l1)
  ( B : dependent-sequential-diagram A l2)
  ( s : section-dependent-sequential-diagram A B)
  where

  map-section-dependent-sequential-diagram :
    ( n : ) (x : family-sequential-diagram A n) 
    family-dependent-sequential-diagram A B n x
  map-section-dependent-sequential-diagram = pr1 s

  naturality-map-section-dependent-sequential-diagram :
    naturality-section-dependent-sequential-diagram A B
      map-section-dependent-sequential-diagram
  naturality-map-section-dependent-sequential-diagram = pr2 s

References

  1. Kristina Sojakova, Floris van Doorn, and Egbert Rijke. 2020. Sequential Colimits in Homotopy Type Theory. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS '20). Association for Computing Machinery, New York, NY, USA, 845–858, DOI:10.1145

Recent changes