Dependent sequential diagrams
Content created by Vojtěch Štěpančík and Fredrik Bakke.
Created on 2023-10-23.
Last modified on 2024-05-23.
module synthetic-homotopy-theory.dependent-sequential-diagrams where
Imports
open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.function-types open import foundation.homotopies open import foundation.universe-levels open import synthetic-homotopy-theory.sequential-diagrams
Idea
A dependent sequential diagram over a
sequential diagram (A, a)
is a sequence of families of types
B : (n : ℕ) → Aₙ → 𝒰
over the types in the base sequential diagram, equipped
with fiberwise maps
bₙ : (x : Aₙ) → Bₙ x → Bₙ₊₁ (aₙ x).
They can be thought of as a family of sequential diagrams
bₙ(x) bₙ₊₁(aₙ(x))
Bₙ(x) ----> Bₙ₊₁(aₙ(x)) -------> Bₙ₊₂(aₙ₊₁(aₙ(x))) ----> ⋯,
one for each x : Aₙ
, or as a sequence fibered over (A, a)
, visualised as
b₀ b₁ b₂
B₀ ---> B₁ ---> B₂ ---> ⋯
| | |
| | |
↡ ↡ ↡
A₀ ---> A₁ ---> A₂ ---> ⋯.
a₀ a₁ a₂
Definitions
Dependent sequential diagrams
dependent-sequential-diagram : { l1 : Level} → (A : sequential-diagram l1) → ( l2 : Level) → UU (l1 ⊔ lsuc l2) dependent-sequential-diagram A l2 = Σ ( ( n : ℕ) → family-sequential-diagram A n → UU l2) ( λ B → ( n : ℕ) (x : family-sequential-diagram A n) → B n x → B (succ-ℕ n) (map-sequential-diagram A n x))
Components of a dependent sequential diagram
module _ { l1 l2 : Level} {A : sequential-diagram l1} ( B : dependent-sequential-diagram A l2) where family-dependent-sequential-diagram : ( n : ℕ) → family-sequential-diagram A n → UU l2 family-dependent-sequential-diagram = pr1 B map-dependent-sequential-diagram : ( n : ℕ) (x : family-sequential-diagram A n) → family-dependent-sequential-diagram n x → family-dependent-sequential-diagram ( succ-ℕ n) ( map-sequential-diagram A n x) map-dependent-sequential-diagram = pr2 B
Constant dependent sequential diagrams
Constant dependent sequential diagrams are dependent sequential diagrams where
the dependent type family B
is constant.
module _ { l1 l2 : Level} (A : sequential-diagram l1) (B : sequential-diagram l2) where constant-dependent-sequential-diagram : dependent-sequential-diagram A l2 pr1 constant-dependent-sequential-diagram n _ = family-sequential-diagram B n pr2 constant-dependent-sequential-diagram n _ = map-sequential-diagram B n
Sections of dependent sequential diagrams
A section of a dependent sequential diagram (B, b)
is a
sequence of sections
sₙ : (x : Aₙ) → Bₙ(x)
satisfying the naturality condition that all squares of
the form
bₙ(x)
Bₙ(x) -------> Bₙ₊₁(aₙ(x))
∧ ∧
sₙ | | sₙ₊₁
| |
(x : Aₙ) ---> (aₙ(x) : Aₙ₊₁)
aₙ
module _ { l1 l2 : Level} (A : sequential-diagram l1) ( B : dependent-sequential-diagram A l2) where naturality-section-dependent-sequential-diagram : ( s : ( n : ℕ) (x : family-sequential-diagram A n) → family-dependent-sequential-diagram B n x) → UU (l1 ⊔ l2) naturality-section-dependent-sequential-diagram s = ( n : ℕ) → ( map-dependent-sequential-diagram B n _ ∘ s n) ~ ( s (succ-ℕ n) ∘ map-sequential-diagram A n) section-dependent-sequential-diagram : UU (l1 ⊔ l2) section-dependent-sequential-diagram = Σ ( ( n : ℕ) (x : family-sequential-diagram A n) → family-dependent-sequential-diagram B n x) ( λ s → naturality-section-dependent-sequential-diagram s)
Components of sections of dependent sequential diagrams
module _ { l1 l2 : Level} (A : sequential-diagram l1) ( B : dependent-sequential-diagram A l2) ( s : section-dependent-sequential-diagram A B) where map-section-dependent-sequential-diagram : ( n : ℕ) (x : family-sequential-diagram A n) → family-dependent-sequential-diagram B n x map-section-dependent-sequential-diagram = pr1 s naturality-map-section-dependent-sequential-diagram : naturality-section-dependent-sequential-diagram A B map-section-dependent-sequential-diagram naturality-map-section-dependent-sequential-diagram = pr2 s
References
- [SvDR20]
- Kristina Sojakova, Floris van Doorn, and Egbert Rijke. Sequential Colimits in Homotopy Type Theory. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '20, 845–858. Association for Computing Machinery, 07 2020. doi:10.1145/3373718.3394801.
Recent changes
- 2024-05-23. Fredrik Bakke. Fix citation tag configuration for some references (#1143).
- 2024-04-25. Fredrik Bakke. chore: Fix arrowheads in character diagrams (#1124).
- 2024-04-16. Vojtěch Štěpančík. Descent data for sequential colimits and its version of the flattening lemma (#1109).
- 2024-04-10. Vojtěch Štěpančík. Shifts and unshifts of concepts around sequential colimits (#1070).
- 2024-03-12. Fredrik Bakke. Bibliographies (#1058).