Complex numbers
Content created by Louis Wasserman.
Created on 2025-10-11.
Last modified on 2025-10-11.
module complex-numbers.complex-numbers where
Imports
open import complex-numbers.gaussian-integers open import foundation.action-on-identifications-functions open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.equality-cartesian-product-types open import foundation.identity-types open import foundation.sets open import foundation.universe-levels open import real-numbers.dedekind-real-numbers open import real-numbers.negation-real-numbers open import real-numbers.raising-universe-levels-real-numbers open import real-numbers.rational-real-numbers
Idea
The
complex numbers¶
are numbers of the form a + bi
, where a
and b
are
real numbers.
Definition
ℂ : (l : Level) → UU (lsuc l) ℂ l = ℝ l × ℝ l re-ℂ : {l : Level} → ℂ l → ℝ l re-ℂ = pr1 im-ℂ : {l : Level} → ℂ l → ℝ l im-ℂ = pr2
Properties
The set of complex numbers
ℂ-Set : (l : Level) → Set (lsuc l) ℂ-Set l = product-Set (ℝ-Set l) (ℝ-Set l) eq-ℂ : {l : Level} → {a b c d : ℝ l} → a = c → b = d → (a , b) = (c , d) eq-ℂ = eq-pair
The canonical embedding of real numbers into the complex numbers
complex-ℝ : {l : Level} → ℝ l → ℂ l complex-ℝ {l} a = (a , raise-ℝ l zero-ℝ)
The imaginary embedding of real numbers into the complex numbers
im-complex-ℝ : {l : Level} → ℝ l → ℂ l im-complex-ℝ {l} a = (raise-ℝ l zero-ℝ , a)
The canonical embedding of Gaussian integers into the complex numbers
complex-ℤ[i] : ℤ[i] → ℂ lzero complex-ℤ[i] (a , b) = (real-ℤ a , real-ℤ b)
The conjugate of a complex number
conjugate-ℂ : {l : Level} → ℂ l → ℂ l conjugate-ℂ (a , b) = (a , neg-ℝ b)
Important complex numbers
zero-ℂ : ℂ lzero zero-ℂ = (zero-ℝ , zero-ℝ) one-ℂ : ℂ lzero one-ℂ = (one-ℝ , zero-ℝ) neg-one-ℂ : ℂ lzero neg-one-ℂ = (neg-one-ℝ , zero-ℝ) i-ℂ : ℂ lzero i-ℂ = (zero-ℝ , one-ℝ)
Negation of complex numbers
neg-ℂ : {l : Level} → ℂ l → ℂ l neg-ℂ (a , b) = (neg-ℝ a , neg-ℝ b)
External links
- Set of complex numbers at Wikidata
Recent changes
- 2025-10-11. Louis Wasserman. Complex numbers (#1573).