Equivalences of higher groups
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-04-10.
Last modified on 2024-03-23.
module higher-group-theory.equivalences-higher-groups where
Imports
open import foundation.0-connected-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-types open import foundation.fundamental-theorem-of-identity-types open import foundation.identity-types open import foundation.subtype-identity-principle open import foundation.torsorial-type-families open import foundation.universe-levels open import higher-group-theory.higher-groups open import higher-group-theory.homomorphisms-higher-groups open import structured-types.pointed-equivalences open import structured-types.pointed-isomorphisms open import structured-types.pointed-types open import synthetic-homotopy-theory.functoriality-loop-spaces
Definitions
Equivalences of higher groups
module _ {l1 l2 : Level} (G : ∞-Group l1) (H : ∞-Group l2) where equiv-∞-Group : UU (l1 ⊔ l2) equiv-∞-Group = classifying-pointed-type-∞-Group G ≃∗ classifying-pointed-type-∞-Group H module _ (e : equiv-∞-Group) where hom-equiv-∞-Group : hom-∞-Group G H hom-equiv-∞-Group = pointed-map-pointed-equiv e map-equiv-∞-Group : type-∞-Group G → type-∞-Group H map-equiv-∞-Group = map-hom-∞-Group G H hom-equiv-∞-Group pointed-equiv-equiv-∞-Group : pointed-type-∞-Group G ≃∗ pointed-type-∞-Group H pointed-equiv-equiv-∞-Group = pointed-equiv-Ω-pointed-equiv e equiv-equiv-∞-Group : type-∞-Group G ≃ type-∞-Group H equiv-equiv-∞-Group = equiv-map-Ω-pointed-equiv e
The identity equivalence of higher groups
id-equiv-∞-Group : {l1 : Level} (G : ∞-Group l1) → equiv-∞-Group G G id-equiv-∞-Group G = id-pointed-equiv
Isomorphisms of ∞-groups
module _ {l1 l2 : Level} (G : ∞-Group l1) (H : ∞-Group l2) where is-iso-∞-Group : hom-∞-Group G H → UU (l1 ⊔ l2) is-iso-∞-Group = is-pointed-iso
Properties
The total space of equivalences of higher groups is contractible
is-torsorial-equiv-∞-Group : {l1 : Level} (G : ∞-Group l1) → is-torsorial (λ (H : ∞-Group l1) → equiv-∞-Group G H) is-torsorial-equiv-∞-Group G = is-torsorial-Eq-subtype ( is-torsorial-pointed-equiv (classifying-pointed-type-∞-Group G)) ( λ X → is-prop-is-0-connected (type-Pointed-Type X)) ( classifying-pointed-type-∞-Group G) ( id-pointed-equiv) ( is-0-connected-classifying-type-∞-Group G) equiv-eq-∞-Group : {l1 : Level} (G H : ∞-Group l1) → (G = H) → equiv-∞-Group G H equiv-eq-∞-Group G .G refl = id-equiv-∞-Group G is-equiv-equiv-eq-∞-Group : {l1 : Level} (G H : ∞-Group l1) → is-equiv (equiv-eq-∞-Group G H) is-equiv-equiv-eq-∞-Group G = fundamental-theorem-id ( is-torsorial-equiv-∞-Group G) ( equiv-eq-∞-Group G) extensionality-∞-Group : {l1 : Level} (G H : ∞-Group l1) → (G = H) ≃ equiv-∞-Group G H pr1 (extensionality-∞-Group G H) = equiv-eq-∞-Group G H pr2 (extensionality-∞-Group G H) = is-equiv-equiv-eq-∞-Group G H eq-equiv-∞-Group : {l1 : Level} (G H : ∞-Group l1) → equiv-∞-Group G H → G = H eq-equiv-∞-Group G H = map-inv-equiv (extensionality-∞-Group G H)
Recent changes
- 2024-03-23. Egbert Rijke. Deloopings and Eilenberg-Mac Lane spaces (#1079).
- 2024-03-13. Egbert Rijke. Refactoring pointed types (#1056).
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-10-21. Egbert Rijke and Fredrik Bakke. Implement
is-torsorial
throughout the library (#875). - 2023-10-21. Egbert Rijke. Rename
is-contr-total
tois-torsorial
(#871).