Extensionality of pseudometric spaces
Content created by Louis Wasserman and malarbol.
Created on 2025-08-18.
Last modified on 2025-08-18.
module metric-spaces.extensionality-pseudometric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-types open import foundation.fundamental-theorem-of-identity-types open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.subtypes open import foundation.torsorial-type-families open import foundation.transport-along-identifications open import foundation.universe-levels open import metric-spaces.pseudometric-spaces open import metric-spaces.similarity-of-elements-pseudometric-spaces
Idea
A pseudometric space is called extensional¶ if the similarity relation has propositional fibers. This is equivalent to the following conditions:
The carrier type of an extensional pseudometric space is a set.
Definitions
The property of being an extensional pseudometric space
module _ {l1 l2 : Level} (A : Pseudometric-Space l1 l2) where is-extensional-prop-Pseudometric-Space : Prop (l1 ⊔ l2) is-extensional-prop-Pseudometric-Space = Π-Prop ( type-Pseudometric-Space A) ( is-prop-Prop ∘ Σ (type-Pseudometric-Space A) ∘ sim-Pseudometric-Space A) is-extensional-Pseudometric-Space : UU (l1 ⊔ l2) is-extensional-Pseudometric-Space = type-Prop is-extensional-prop-Pseudometric-Space is-prop-is-extensional-Pseudometric-Space : is-prop is-extensional-Pseudometric-Space is-prop-is-extensional-Pseudometric-Space = is-prop-type-Prop is-extensional-prop-Pseudometric-Space
Tightness of a pseudometric space
A pseudometric space is tight¶ if any two similar elements are equal.
module _ {l1 l2 : Level} (A : Pseudometric-Space l1 l2) where is-tight-Pseudometric-Space : UU (l1 ⊔ l2) is-tight-Pseudometric-Space = (x y : type-Pseudometric-Space A) → sim-Pseudometric-Space A x y → x = y
Properties
Tight pseudometric spaces are extensional
module _ {l1 l2 : Level} (A : Pseudometric-Space l1 l2) (T : is-tight-Pseudometric-Space A) where is-extensional-is-tight-Pseudometric-Space : is-extensional-Pseudometric-Space A is-extensional-is-tight-Pseudometric-Space x = is-prop-all-elements-equal ( λ (u , I) (v , J) → eq-type-subtype ( sim-prop-Pseudometric-Space A x) ( inv (T x u I) ∙ T x v J))
Characterization of equality in an extensional pseudometric space
module _ {l1 l2 : Level} (A : Pseudometric-Space l1 l2) (E : is-extensional-Pseudometric-Space A) where is-torsorial-sim-is-extensional-Pseudometric-Space : (x : type-Pseudometric-Space A) → is-torsorial (sim-Pseudometric-Space A x) is-torsorial-sim-is-extensional-Pseudometric-Space x = is-proof-irrelevant-is-prop ( E x) ( x , refl-sim-Pseudometric-Space A x) is-fiberwise-equiv-sim-eq-is-extensional-Pseudometric-Space : (x y : type-Pseudometric-Space A) → is-equiv (sim-eq-Pseudometric-Space A x y) is-fiberwise-equiv-sim-eq-is-extensional-Pseudometric-Space x = fundamental-theorem-id ( is-torsorial-sim-is-extensional-Pseudometric-Space x) ( sim-eq-Pseudometric-Space A x) equiv-sim-eq-is-extensional-Pseudometric-Space : (x y : type-Pseudometric-Space A) → (x = y) ≃ (sim-Pseudometric-Space A x y) equiv-sim-eq-is-extensional-Pseudometric-Space x y = ( sim-eq-Pseudometric-Space A x y) , ( is-fiberwise-equiv-sim-eq-is-extensional-Pseudometric-Space x y) eq-sim-is-extensional-Pseudometric-Space : (x y : type-Pseudometric-Space A) → sim-Pseudometric-Space A x y → x = y eq-sim-is-extensional-Pseudometric-Space x y = map-inv-equiv (equiv-sim-eq-is-extensional-Pseudometric-Space x y)
Extensional pseudometric spaces are tight
module _ {l1 l2 : Level} (A : Pseudometric-Space l1 l2) (E : is-extensional-Pseudometric-Space A) where is-tight-is-extensional-Pseudometric-Space : is-tight-Pseudometric-Space A is-tight-is-extensional-Pseudometric-Space = eq-sim-is-extensional-Pseudometric-Space A E
The carrier type of an extensional pseudometric space is a set
module _ {l1 l2 : Level} (A : Pseudometric-Space l1 l2) (E : is-extensional-Pseudometric-Space A) where is-set-type-is-extensional-Pseudometric-Space : is-set (type-Pseudometric-Space A) is-set-type-is-extensional-Pseudometric-Space x y = is-prop-is-equiv ( is-fiberwise-equiv-sim-eq-is-extensional-Pseudometric-Space ( A) ( E) ( x) ( y)) ( is-prop-sim-Pseudometric-Space A x y)
See also
- Extensional pseudometric spaces are called metric spaces.
Recent changes
- 2025-08-18. malarbol and Louis Wasserman. Refactor metric spaces (#1450).