Functoriality of fibers of maps
Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.
Created on 2022-07-25.
Last modified on 2024-08-17.
module foundation.functoriality-fibers-of-maps where
Imports
open import foundation.action-on-higher-identifications-functions open import foundation.action-on-identifications-functions open import foundation.cones-over-cospan-diagrams open import foundation.dependent-pair-types open import foundation.homotopies-morphisms-arrows open import foundation.morphisms-arrows open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import foundation-core.commuting-squares-of-homotopies open import foundation-core.commuting-squares-of-maps open import foundation-core.equality-dependent-pair-types open import foundation-core.fibers-of-maps open import foundation-core.function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.homotopies open import foundation-core.identity-types
Idea
Any morphism of arrows (i , j , H)
from f
to g
i
A -----> X
| |
f | | g
∨ ∨
B -----> Y
j
induces a morphism of arrows between the
fiber inclusions of f
and g
, i.e., a
commuting square
fiber f b -----> fiber g (j b)
| |
| |
∨ ∨
A ---------------> X.
This operation from morphisms of arrows from f
to g
to morphisms of arrows
between their fiber inclusions is the functorial action of fibers. The
functorial action obeys the functor laws, i.e., it preserves identity morphisms
and composition.
Definitions
Any commuting square induces a family of maps between the fibers of the vertical maps
Our definition of map-domain-hom-arrow-fiber
is given in such a way that it
always computes nicely.
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) (α : hom-arrow f g) (b : B) where map-domain-hom-arrow-fiber : fiber f b → fiber g (map-codomain-hom-arrow f g α b) map-domain-hom-arrow-fiber = map-Σ _ ( map-domain-hom-arrow f g α) ( λ a p → inv (coh-hom-arrow f g α a) ∙ ap (map-codomain-hom-arrow f g α) p) map-fiber : fiber f b → fiber g (map-codomain-hom-arrow f g α b) map-fiber = map-domain-hom-arrow-fiber map-codomain-hom-arrow-fiber : A → X map-codomain-hom-arrow-fiber = map-domain-hom-arrow f g α coh-hom-arrow-fiber : coherence-square-maps ( map-domain-hom-arrow-fiber) ( inclusion-fiber f) ( inclusion-fiber g) ( map-domain-hom-arrow f g α) coh-hom-arrow-fiber = refl-htpy hom-arrow-fiber : hom-arrow ( inclusion-fiber f {b}) ( inclusion-fiber g {map-codomain-hom-arrow f g α b}) pr1 hom-arrow-fiber = map-domain-hom-arrow-fiber pr1 (pr2 hom-arrow-fiber) = map-codomain-hom-arrow-fiber pr2 (pr2 hom-arrow-fiber) = coh-hom-arrow-fiber
Any cone induces a family of maps between the fibers of the vertical maps
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (f : A → X) (g : B → X) (c : cone f g C) (a : A) where map-fiber-vertical-map-cone : fiber (vertical-map-cone f g c) a → fiber g (f a) map-fiber-vertical-map-cone = map-domain-hom-arrow-fiber ( vertical-map-cone f g c) ( g) ( hom-arrow-cone f g c) ( a)
Any cone induces a family of maps between the fibers of the vertical maps
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (f : A → X) (g : B → X) (c : cone f g C) (b : B) where map-fiber-horizontal-map-cone : fiber (horizontal-map-cone f g c) b → fiber f (g b) map-fiber-horizontal-map-cone = map-domain-hom-arrow-fiber ( horizontal-map-cone f g c) ( f) ( hom-arrow-cone' f g c) ( b)
For any f : A → B
and any identification p : b = b'
in B
, we obtain a morphism of arrows between the fiber inclusion at b
to the fiber inclusion at b'
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) where tr-hom-arrow-inclusion-fiber : {b b' : B} (p : b = b') → hom-arrow (inclusion-fiber f {b}) (inclusion-fiber f {b'}) pr1 (tr-hom-arrow-inclusion-fiber p) = tot (λ a → concat' (f a) p) pr1 (pr2 (tr-hom-arrow-inclusion-fiber p)) = id pr2 (pr2 (tr-hom-arrow-inclusion-fiber p)) = refl-htpy
Properties
The functorial action of fiber
preserves the identity function
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (b : B) where preserves-id-map-fiber : map-domain-hom-arrow-fiber f f id-hom-arrow b ~ id preserves-id-map-fiber (a , refl) = refl coh-preserves-id-hom-arrow-fiber : coherence-square-homotopies ( refl-htpy) ( refl-htpy) ( coh-hom-arrow-fiber f f id-hom-arrow b) ( inclusion-fiber f ·l preserves-id-map-fiber) coh-preserves-id-hom-arrow-fiber (a , refl) = refl preserves-id-hom-arrow-fiber : htpy-hom-arrow ( inclusion-fiber f) ( inclusion-fiber f) ( hom-arrow-fiber f f id-hom-arrow b) ( id-hom-arrow) pr1 preserves-id-hom-arrow-fiber = preserves-id-map-fiber pr1 (pr2 preserves-id-hom-arrow-fiber) = refl-htpy pr2 (pr2 preserves-id-hom-arrow-fiber) = coh-preserves-id-hom-arrow-fiber
The functorial action of fiber
preserves composition of morphisms of arrows
module _ {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} {U : UU l5} {V : UU l6} (f : A → B) (g : X → Y) (h : U → V) (β : hom-arrow g h) (α : hom-arrow f g) (b : B) where preserves-comp-map-fiber : map-fiber f h (comp-hom-arrow f g h β α) b ~ map-fiber g h β (map-codomain-hom-arrow f g α b) ∘ map-fiber f g α b preserves-comp-map-fiber (a , refl) = ap ( pair _) ( ( right-unit) ∙ ( distributive-inv-concat ( ap (map-codomain-hom-arrow g h β) (coh-hom-arrow f g α a)) ( coh-hom-arrow g h β (map-domain-hom-arrow f g α a))) ∙ ( ap ( concat (inv (coh-hom-arrow g h β (pr1 α a))) _) ( inv ( ( ap² (map-codomain-hom-arrow g h β) right-unit) ∙ ( ap-inv ( map-codomain-hom-arrow g h β) ( coh-hom-arrow f g α a)))))) compute-left-whisker-inclusion-fiber-preserves-comp-map-fiber : inclusion-fiber h ·l preserves-comp-map-fiber ~ refl-htpy compute-left-whisker-inclusion-fiber-preserves-comp-map-fiber (a , refl) = ( inv (ap-comp (inclusion-fiber h) (pair _) _)) ∙ ( ap-const _ _) coh-preserves-comp-hom-arrow-fiber : coherence-square-homotopies ( refl-htpy) ( coh-hom-arrow ( inclusion-fiber f) ( inclusion-fiber h) ( hom-arrow-fiber f h (comp-hom-arrow f g h β α) b)) ( coh-hom-arrow ( inclusion-fiber f) ( inclusion-fiber h) ( comp-hom-arrow ( inclusion-fiber f) ( inclusion-fiber g) ( inclusion-fiber h) ( hom-arrow-fiber g h β (map-codomain-hom-arrow f g α b)) ( hom-arrow-fiber f g α b))) ( inclusion-fiber h ·l preserves-comp-map-fiber) coh-preserves-comp-hom-arrow-fiber p = ap ( concat _ _) ( compute-left-whisker-inclusion-fiber-preserves-comp-map-fiber p) preserves-comp-hom-arrow-fiber : htpy-hom-arrow ( inclusion-fiber f) ( inclusion-fiber h) ( hom-arrow-fiber f h (comp-hom-arrow f g h β α) b) ( comp-hom-arrow ( inclusion-fiber f) ( inclusion-fiber g) ( inclusion-fiber h) ( hom-arrow-fiber g h β (map-codomain-hom-arrow f g α b)) ( hom-arrow-fiber f g α b)) pr1 preserves-comp-hom-arrow-fiber = preserves-comp-map-fiber pr1 (pr2 preserves-comp-hom-arrow-fiber) = refl-htpy pr2 (pr2 preserves-comp-hom-arrow-fiber) = coh-preserves-comp-hom-arrow-fiber
The functorial action of fiber
preserves homotopies of morphisms of fibers
Given two morphisms of arrows
α₀
------>
A ------> X
| β₀ |
| |
f | α β | g
| |
∨ α₁ ∨
B ------> Y
------>
β₁
with a homotopy γ : α ~ β
of morphisms of arrows, we obtain a commuting
diagram of the form
fiber g (α₁ b)
∧ | \
/ | \ (x , q) ↦ (x , q ∙ γ₁ b)
/ | \
/ | ∨
fiber f b --------> fiber g (β₁ b)
| | /
| | /
| | /
| | /
∨ ∨ ∨
A -------> X
To show that we have such a commuting diagram, we have to show that the top triangle commutes, and that there is a homotopy filling the diagram:
We first show that the top triangle commutes. To see this, let
(a , refl) : fiber f (f a)
. Then we have to show that
((x , q) ↦ (x , q ∙ γ₁ b)) (map-fiber f g α (a , refl)) =
map-fiber f g β (a , refl)
Simply computing the left-hand side and the right-hand side, we're tasked with constructing an identification
(α₀ a , ((α a)⁻¹ ∙ refl) ∙ γ₁ (f a)) = (β₀ a , (β a)⁻¹ ∙ refl)
By the characterization of equality in fibers, it suffices to construct identifications
p : α₀ a = β₀ a
q : ap g p ∙ ((β a)⁻¹ ∙ refl) = ((α a)⁻¹ ∙ refl) ∙ γ₁ (f a)
The first identification is γ₀ a
. To obtain the second identification, we
first simplify using the right unit law. I.e., it suffices to construct an
identification
ap g p ∙ (β a)⁻¹ = (α a)⁻¹ ∙ γ₁ (f a).
Now we proceed by transposing equality on both sides, i.e., it suffices to costruct an identification
α a ∙ ap g p = γ₁ (f a) ∙ β a.
The identification γ a
has exactly this type. This completes the construction
of the homotopy witnessing that the upper triangle commutes. Since it is
constructed as a family of identifications of the form
eq-Eq-fiber g (γ₀ a) _,
it follows that when we left whisker this homotopy with inclusion-fiber g
, we
recover the homotopy γ₀ ·r inclusion-fiber f
.
Now it remains to fill a coherence for the square of homotopies
γ₀ ·r i
· ---------> ·
| |
coh (tr ∘ α b) | | coh-hom-arrow-fiber f g β b
≐ refl-htpy | | ≐ refl-htpy
∨ ∨
· ---------> ·
i ·r H
where H
is the homotopy that we just constructed, witnessing that the upper
triangle commutes, and where we have written i
for all fiber inclusions.
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) (α β : hom-arrow f g) (γ : htpy-hom-arrow f g α β) (b : B) where htpy-fiber : ( tot (λ x → concat' (g x) (htpy-codomain-htpy-hom-arrow f g α β γ b)) ∘ map-fiber f g α b) ~ ( map-fiber f g β b) htpy-fiber (a , refl) = eq-Eq-fiber g ( map-codomain-hom-arrow f g β (f a)) ( htpy-domain-htpy-hom-arrow f g α β γ a) ( ( ap ( concat ( ap g (htpy-domain-htpy-hom-arrow f g α β γ a)) ( map-codomain-hom-arrow f g β (f a))) ( right-unit)) ∙ ( double-transpose-eq-concat' ( htpy-codomain-htpy-hom-arrow f g α β γ (f a)) ( coh-hom-arrow f g α a) ( coh-hom-arrow f g β a) ( ap g (htpy-domain-htpy-hom-arrow f g α β γ a)) ( coh-htpy-hom-arrow f g α β γ a)) ∙ ( inv ( ap ( concat' ( g (map-domain-hom-arrow f g α a)) ( htpy-codomain-htpy-hom-arrow f g α β γ (f a))) ( right-unit)))) compute-left-whisker-inclusion-fiber-htpy-fiber : inclusion-fiber g ·l htpy-fiber ~ htpy-domain-htpy-hom-arrow f g α β γ ·r inclusion-fiber f compute-left-whisker-inclusion-fiber-htpy-fiber (a , refl) = compute-ap-inclusion-fiber-eq-Eq-fiber g ( map-codomain-hom-arrow f g β (f a)) ( htpy-domain-htpy-hom-arrow f g α β γ a) ( _) htpy-codomain-htpy-hom-arrow-fiber : map-codomain-hom-arrow-fiber f g α b ~ map-codomain-hom-arrow-fiber f g β b htpy-codomain-htpy-hom-arrow-fiber = htpy-domain-htpy-hom-arrow f g α β γ coh-htpy-hom-arrow-fiber : coherence-square-homotopies ( htpy-domain-htpy-hom-arrow f g α β γ ·r inclusion-fiber f) ( refl-htpy) ( refl-htpy) ( inclusion-fiber g ·l htpy-fiber) coh-htpy-hom-arrow-fiber = compute-left-whisker-inclusion-fiber-htpy-fiber ∙h inv-htpy right-unit-htpy htpy-hom-arrow-fiber : htpy-hom-arrow ( inclusion-fiber f) ( inclusion-fiber g) ( comp-hom-arrow ( inclusion-fiber f) ( inclusion-fiber g) ( inclusion-fiber g) ( tr-hom-arrow-inclusion-fiber g ( htpy-codomain-htpy-hom-arrow f g α β γ b)) ( hom-arrow-fiber f g α b)) ( hom-arrow-fiber f g β b) pr1 htpy-hom-arrow-fiber = htpy-fiber pr1 (pr2 htpy-hom-arrow-fiber) = htpy-codomain-htpy-hom-arrow-fiber pr2 (pr2 htpy-hom-arrow-fiber) = coh-htpy-hom-arrow-fiber
Computing map-fiber-vertical-map-cone
of a horizontal pasting of cones
module _ {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} (i : X → Y) (j : Y → Z) (h : C → Z) where preserves-pasting-horizontal-map-fiber-vertical-map-cone : (c : cone j h B) (d : cone i (vertical-map-cone j h c) A) (x : X) → ( map-fiber-vertical-map-cone (j ∘ i) h ( pasting-horizontal-cone i j h c d) ( x)) ~ ( map-fiber-vertical-map-cone j h c (i x) ∘ map-fiber-vertical-map-cone i (vertical-map-cone j h c) d x) preserves-pasting-horizontal-map-fiber-vertical-map-cone c d = preserves-comp-map-fiber ( vertical-map-cone i (vertical-map-cone j h c) d) ( vertical-map-cone j h c) ( h) ( hom-arrow-cone j h c) ( hom-arrow-cone i (vertical-map-cone j h c) d)
Computing map-fiber-vertical-map-cone
of a horizontal pasting of cones
Note: There should be a definition of vertical composition of morphisms of
arrows, and a proof that hom-arrow-fiber
preserves vertical composition.
module _ {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} (f : C → Z) (g : Y → Z) (h : X → Y) where preserves-pasting-vertical-map-fiber-vertical-map-cone : (c : cone f g B) (d : cone (horizontal-map-cone f g c) h A) (x : C) → ( ( map-fiber-vertical-map-cone f (g ∘ h) ( pasting-vertical-cone f g h c d) ( x)) ∘ ( map-inv-compute-fiber-comp (pr1 c) (pr1 d) x)) ~ ( ( map-inv-compute-fiber-comp g h (f x)) ∘ ( map-Σ ( λ t → fiber h (pr1 t)) ( map-fiber-vertical-map-cone f g c x) ( λ t → map-fiber-vertical-map-cone (horizontal-map-cone f g c) h d (pr1 t)))) preserves-pasting-vertical-map-fiber-vertical-map-cone (p , q , H) (p' , q' , H') .(p (p' a)) ((.(p' a) , refl) , (a , refl)) = eq-pair-eq-fiber ( ( right-unit) ∙ ( distributive-inv-concat (H (p' a)) (ap g (H' a))) ∙ ( ap ( concat (inv (ap g (H' a))) (f (p (p' a)))) ( inv right-unit)) ∙ ( ap ( concat' (g (h (q' a))) ( pr2 ( map-fiber-vertical-map-cone f g ( p , q , H) ( p (p' a)) ( p' a , refl)))) ( ( inv (ap-inv g (H' a))) ∙ ( ap² g (inv right-unit)))))
See also
- In retracts of maps, we show that if
g
is a retract ofg'
, then the fibers ofg
are retracts of the fibers ofg'
.
Table of files about fibers of maps
The following table lists files that are about fibers of maps as a general concept.
Concept | File |
---|---|
Fibers of maps (foundation-core) | foundation-core.fibers-of-maps |
Fibers of maps (foundation) | foundation.fibers-of-maps |
Equality in the fibers of a map | foundation.equality-fibers-of-maps |
Functoriality of fibers of maps | foundation.functoriality-fibers-of-maps |
Fibers of pointed maps | structured-types.fibers-of-pointed-maps |
Fibers of maps of finite types | univalent-combinatorics.fibers-of-maps |
The universal property of the family of fibers of maps | foundation.universal-property-family-of-fibers-of-maps |
Recent changes
- 2024-08-17. Fredrik Bakke. Horizontal fiber condition for pullbacks (#1142).
- 2024-04-25. Fredrik Bakke. chore: Fix arrowheads in character diagrams (#1124).
- 2024-03-02. Fredrik Bakke. Factor out standard pullbacks (#1042).
- 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).
- 2024-01-28. Egbert Rijke. Span diagrams (#1007).