The globular type of dependent functions
Content created by Egbert Rijke.
Created on 2024-12-03.
Last modified on 2024-12-03.
{-# OPTIONS --guardedness #-} module foundation.globular-type-of-dependent-functions where
Imports
open import foundation.universe-levels open import foundation-core.homotopies open import globular-types.globular-types open import globular-types.reflexive-globular-types open import globular-types.transitive-globular-types
Idea
The globular type of dependent functions¶ is the globular type consisting of dependent functions and homotopies between them. Since homotopies are themselves defined to be certain dependent functions, they directly provide a globular structure on dependent function types.
The globular type of dependent functions of a type family B
over A
is
reflexive and
transitive, so it is a
noncoherent wild higher precategory.
The structures defined in this file are used to define the noncoherent large wild higher precategory of types.
Definitions
The globular type of dependent functions
dependent-function-type-Globular-Type : {l1 l2 : Level} (A : UU l1) (B : A → UU l2) → Globular-Type (l1 ⊔ l2) (l1 ⊔ l2) 0-cell-Globular-Type (dependent-function-type-Globular-Type A B) = (x : A) → B x 1-cell-globular-type-Globular-Type ( dependent-function-type-Globular-Type A B) f g = dependent-function-type-Globular-Type A (eq-value f g)
Properties
The globular type of dependent functions is reflexive
is-reflexive-dependent-function-type-Globular-Type : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → is-reflexive-Globular-Type (dependent-function-type-Globular-Type A B) is-reflexive-1-cell-is-reflexive-Globular-Type is-reflexive-dependent-function-type-Globular-Type f = refl-htpy is-reflexive-1-cell-globular-type-is-reflexive-Globular-Type is-reflexive-dependent-function-type-Globular-Type = is-reflexive-dependent-function-type-Globular-Type dependent-function-type-Reflexive-Globular-Type : {l1 l2 : Level} (A : UU l1) (B : A → UU l2) → Reflexive-Globular-Type (l1 ⊔ l2) (l1 ⊔ l2) globular-type-Reflexive-Globular-Type ( dependent-function-type-Reflexive-Globular-Type A B) = dependent-function-type-Globular-Type A B refl-Reflexive-Globular-Type ( dependent-function-type-Reflexive-Globular-Type A B) = is-reflexive-dependent-function-type-Globular-Type
The globular type of dependent functions is transitive
is-transitive-dependent-function-type-Globular-Type : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → is-transitive-Globular-Type (dependent-function-type-Globular-Type A B) comp-1-cell-is-transitive-Globular-Type is-transitive-dependent-function-type-Globular-Type K H = H ∙h K is-transitive-1-cell-globular-type-is-transitive-Globular-Type is-transitive-dependent-function-type-Globular-Type = is-transitive-dependent-function-type-Globular-Type dependent-function-type-Transitive-Globular-Type : {l1 l2 : Level} (A : UU l1) (B : A → UU l2) → Transitive-Globular-Type (l1 ⊔ l2) (l1 ⊔ l2) globular-type-Transitive-Globular-Type ( dependent-function-type-Transitive-Globular-Type A B) = dependent-function-type-Globular-Type A B is-transitive-Transitive-Globular-Type ( dependent-function-type-Transitive-Globular-Type A B) = is-transitive-dependent-function-type-Globular-Type
See also
Recent changes
- 2024-12-03. Egbert Rijke. Hofmann-Streicher universes for graphs and globular types (#1196).