Morphisms of directed trees
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-05-03.
Last modified on 2024-02-06.
module trees.morphisms-directed-trees where
Imports
open import foundation.binary-transport open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.equality-dependent-pair-types open import foundation.equivalences open import foundation.function-types open import foundation.functoriality-dependent-pair-types open import foundation.homotopies open import foundation.identity-types open import foundation.negation open import foundation.torsorial-type-families open import foundation.transport-along-identifications open import foundation.type-arithmetic-empty-type open import foundation.universe-levels open import graph-theory.morphisms-directed-graphs open import graph-theory.walks-directed-graphs open import trees.directed-trees
Idea
A morphism of directed trees from S
to T
is a morphism between their
underlying directed graphs.
Definitions
Morphisms of directed trees
hom-Directed-Tree : {l1 l2 l3 l4 : Level} (S : Directed-Tree l1 l2) (T : Directed-Tree l3 l4) → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) hom-Directed-Tree S T = hom-Directed-Graph (graph-Directed-Tree S) (graph-Directed-Tree T) module _ {l1 l2 l3 l4 : Level} (S : Directed-Tree l1 l2) (T : Directed-Tree l3 l4) (f : hom-Directed-Tree S T) where node-hom-Directed-Tree : node-Directed-Tree S → node-Directed-Tree T node-hom-Directed-Tree = vertex-hom-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( f) edge-hom-Directed-Tree : {x y : node-Directed-Tree S} → edge-Directed-Tree S x y → edge-Directed-Tree T (node-hom-Directed-Tree x) (node-hom-Directed-Tree y) edge-hom-Directed-Tree = edge-hom-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( f) direct-predecessor-hom-Directed-Tree : (x : node-Directed-Tree S) → Σ ( node-Directed-Tree S) (λ y → edge-Directed-Tree S y x) → Σ ( node-Directed-Tree T) ( λ y → edge-Directed-Tree T y (node-hom-Directed-Tree x)) direct-predecessor-hom-Directed-Tree x = map-Σ ( λ y → edge-Directed-Tree T y (node-hom-Directed-Tree x)) ( node-hom-Directed-Tree) ( λ y → edge-hom-Directed-Tree) walk-hom-Directed-Tree : {x y : node-Directed-Tree S} → walk-Directed-Tree S x y → walk-Directed-Tree T (node-hom-Directed-Tree x) (node-hom-Directed-Tree y) walk-hom-Directed-Tree = walk-hom-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( f)
Identity morphisms of directed trees
id-hom-Directed-Tree : {l1 l2 : Level} (T : Directed-Tree l1 l2) → hom-Directed-Tree T T id-hom-Directed-Tree T = id-hom-Directed-Graph (graph-Directed-Tree T)
Composition of morphisms of directed trees
module _ {l1 l2 l3 l4 l5 l6 : Level} (R : Directed-Tree l1 l2) (S : Directed-Tree l3 l4) (T : Directed-Tree l5 l6) (g : hom-Directed-Tree S T) (f : hom-Directed-Tree R S) where node-comp-hom-Directed-Tree : node-Directed-Tree R → node-Directed-Tree T node-comp-hom-Directed-Tree = vertex-comp-hom-Directed-Graph ( graph-Directed-Tree R) ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( g) ( f) edge-comp-hom-Directed-Tree : (x y : node-Directed-Tree R) (e : edge-Directed-Tree R x y) → edge-Directed-Tree T ( node-comp-hom-Directed-Tree x) ( node-comp-hom-Directed-Tree y) edge-comp-hom-Directed-Tree = edge-comp-hom-Directed-Graph ( graph-Directed-Tree R) ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( g) ( f) comp-hom-Directed-Tree : hom-Directed-Tree R T comp-hom-Directed-Tree = comp-hom-Directed-Graph ( graph-Directed-Tree R) ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( g) ( f)
Homotopies of morphisms of directed trees
module _ {l1 l2 l3 l4 : Level} (S : Directed-Tree l1 l2) (T : Directed-Tree l3 l4) (f g : hom-Directed-Tree S T) where htpy-hom-Directed-Tree : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) htpy-hom-Directed-Tree = htpy-hom-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( f) ( g) node-htpy-hom-Directed-Tree : htpy-hom-Directed-Tree → node-hom-Directed-Tree S T f ~ node-hom-Directed-Tree S T g node-htpy-hom-Directed-Tree = vertex-htpy-hom-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( f) ( g) edge-htpy-hom-Directed-Tree : ( α : htpy-hom-Directed-Tree) → ( x y : node-Directed-Tree S) (e : edge-Directed-Tree S x y) → binary-tr ( edge-Directed-Tree T) ( node-htpy-hom-Directed-Tree α x) ( node-htpy-hom-Directed-Tree α y) ( edge-hom-Directed-Tree S T f e) = edge-hom-Directed-Tree S T g e edge-htpy-hom-Directed-Tree = edge-htpy-hom-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( f) ( g) direct-predecessor-htpy-hom-Directed-Tree : ( α : htpy-hom-Directed-Tree) → ( x : node-Directed-Tree S) → ( ( tot ( λ y → tr ( edge-Directed-Tree T y) ( node-htpy-hom-Directed-Tree α x))) ∘ ( direct-predecessor-hom-Directed-Tree S T f x)) ~ ( direct-predecessor-hom-Directed-Tree S T g x) direct-predecessor-htpy-hom-Directed-Tree α x (y , e) = eq-pair-Σ ( node-htpy-hom-Directed-Tree α y) ( ( compute-binary-tr ( edge-Directed-Tree T) ( node-htpy-hom-Directed-Tree α y) ( node-htpy-hom-Directed-Tree α x) ( edge-hom-Directed-Tree S T f e)) ∙ ( edge-htpy-hom-Directed-Tree α y x e))
The reflexivity homotopy of morphisms of directed trees
refl-htpy-hom-Directed-Tree : {l1 l2 l3 l4 : Level} (S : Directed-Tree l1 l2) (T : Directed-Tree l3 l4) → (f : hom-Directed-Tree S T) → htpy-hom-Directed-Tree S T f f refl-htpy-hom-Directed-Tree S T f = refl-htpy-hom-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( f)
Properties
Homotopies characterize identifications of morphisms of directed trees
module _ {l1 l2 l3 l4 : Level} (S : Directed-Tree l1 l2) (T : Directed-Tree l3 l4) (f : hom-Directed-Tree S T) where is-torsorial-htpy-hom-Directed-Tree : is-torsorial (htpy-hom-Directed-Tree S T f) is-torsorial-htpy-hom-Directed-Tree = is-torsorial-htpy-hom-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( f) htpy-eq-hom-Directed-Tree : (g : hom-Directed-Tree S T) → f = g → htpy-hom-Directed-Tree S T f g htpy-eq-hom-Directed-Tree = htpy-eq-hom-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( f) is-equiv-htpy-eq-hom-Directed-Tree : (g : hom-Directed-Tree S T) → is-equiv (htpy-eq-hom-Directed-Tree g) is-equiv-htpy-eq-hom-Directed-Tree = is-equiv-htpy-eq-hom-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( f) extensionality-hom-Directed-Tree : (g : hom-Directed-Tree S T) → (f = g) ≃ htpy-hom-Directed-Tree S T f g extensionality-hom-Directed-Tree = extensionality-hom-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( f) eq-htpy-hom-Directed-Tree : (g : hom-Directed-Tree S T) → htpy-hom-Directed-Tree S T f g → f = g eq-htpy-hom-Directed-Tree = eq-htpy-hom-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( f)
If f x
is the root of T
, then x
is the root of S
module _ {l1 l2 l3 l4 : Level} (S : Directed-Tree l1 l2) (T : Directed-Tree l3 l4) (f : hom-Directed-Tree S T) where is-root-is-root-node-hom-Directed-Tree : (x : node-Directed-Tree S) → is-root-Directed-Tree T (node-hom-Directed-Tree S T f x) → is-root-Directed-Tree S x is-root-is-root-node-hom-Directed-Tree x H = map-right-unit-law-coproduct-is-empty ( is-root-Directed-Tree S x) ( Σ (node-Directed-Tree S) (edge-Directed-Tree S x)) ( λ (y , e) → no-direct-successor-root-Directed-Tree T ( tr ( λ u → Σ (node-Directed-Tree T) (edge-Directed-Tree T u)) ( inv H) ( node-hom-Directed-Tree S T f y , edge-hom-Directed-Tree S T f e))) ( center (unique-direct-successor-Directed-Tree S x)) is-not-root-node-hom-is-not-root-Directed-Tree : (x : node-Directed-Tree S) → ¬ (is-root-Directed-Tree S x) → ¬ (is-root-Directed-Tree T (node-hom-Directed-Tree S T f x)) is-not-root-node-hom-is-not-root-Directed-Tree x = map-neg (is-root-is-root-node-hom-Directed-Tree x)
See also
- Root-preserving morphisms of directed trees are introduced in
rooted-morphisms-directed-trees
Recent changes
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-10-21. Egbert Rijke and Fredrik Bakke. Implement
is-torsorial
throughout the library (#875). - 2023-10-21. Egbert Rijke. Rename
is-contr-total
tois-torsorial
(#871). - 2023-09-11. Fredrik Bakke. Transport along and action on equivalences (#706).